Skip to main content
Log in

Investigations on solid-state parameters of third-order nonlinear optical Ni1−xZnxFe2O4 nanoparticles synthesized by microwave-assisted combustion method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, Ni1−xZnxFe2O4 (x = 0, 0.25, and 0.5) nanoparticles were successfully synthesized via microwave-assisted combustion method and characterized by XRD, FTIR, and SEM–EDAX. XRD results enunciate that the nanoparticle crystallizes in cubic spinel structure with an average crystallite size (40.2, 37.2, 35.1 nm), and also, the lattice strain, specific surface area, X-ray density were evaluated. The morphology and chemical compositions of Ni, Zn, Fe, and O elements were confirmed by the SEM–EDAX studies. For all the samples, vibrational stretching modes of Mtetra–O site (597 (S1), 593 (S2), 583 (S3) cm−1) and Moctra–O site (416 (S1), 421 (S2), 422 (S3) cm−1) were related to the distribution of the cation Ni2+/Zn2+ and Fe3+ ions among the octahedral and tetrahedral sites. From the UV–Vis–DRS spectra, the optical energy band gap has been estimated to be 1.75–2.01 eV. The dielectric constant and loss were measured by varying the applied frequency (50 Hz to 200 kHz) at room temperature. The electronic polarizability (α) was calculated using Penn analysis, Clausius–Mossotti equation, and energy band gap value. Third-order nonlinear optical parameters such as the nonlinear absorption coefficients (10−5 cm/W), refractive index (10−9 cm2/W) and the third-order nonlinear susceptibilities (10−6 esu) were determined by Z-scan technique. The antibacterial studies were tested against Bacillus cereus, Staphylococcus aureus, Shigalla flexneri and Klebsiella pneumonia bacterial strains. The existing results point out that the synthesized Ni/Zn/Fe2O4 nanoparticles are possible candidates for photonic devices, optical switches, optical limiting and also for pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.G. Gawas, S.S. Meena, P. Bhatt, V.M.S. Verenkar, Mater. Chem. Front. 2, 300–312 (2018)

    Google Scholar 

  2. H. Ghayour, M. Abdellahi, N. Ozada, S. Jabbrzare, A. Khandan, J. Phys. Chem. Solids 111, 464–472 (2017)

    ADS  Google Scholar 

  3. S.K. Gore, U.B. Tumberphale, S.S. Jadhav, R.S. Kawale, M. Naushad, R.S. Mane, Phys. B Condens. Matter 530, 177–182 (2018)

    ADS  Google Scholar 

  4. A. Pathania, S. Bhardwaj, S.S. Thakur, J.-L. Mattei, P. Queffelec, L.V. Panina, P. Thakur, A. Thakur, Phys. B Condens. Matter 531, 45–50 (2018)

    ADS  Google Scholar 

  5. D. Rathore, R. Kurchania, R.K. Pandey, Sens. Actuat. A Phys. 199, 236–240 (2013)

    Google Scholar 

  6. S.B. Bhasker, G.N. Rao, F.C. Chou, M.V.R. Reddy, J. Magn. Magn. Mater. 452, 398–406 (2018)

    ADS  Google Scholar 

  7. M. Rahimi, P. Kameli, M. Ranjbar, H. Hajihashemi, H. Salamati, J. Mater. Sci. 48, 2969–2976 (2013)

    ADS  Google Scholar 

  8. H. Wu, N. Zhang, L. Mao, T. Li, L. Xia, J. Alloys Compd. 554, 132–137 (2013)

    Google Scholar 

  9. S. Atiq, M. Majeed, A. Ahmad, S.K. Abbas, M. Saleem, S. Riaz, S. Naseem, Ceram. Int. 43, 2486–2494 (2017)

    Google Scholar 

  10. A.I. Tovstolytkin, M.M. Kulyk, V.M. Kalita, S.M. Ryabchenko, V.O. Zamorskyi, O.P. Fedorchuk, S.O. Solopan, A.G. Belous, J. Magn. Magn. Mater. 473, 422–427 (2019)

    ADS  Google Scholar 

  11. P.A. Vinosha, B. Xavier, S. Krishnan, S.J. Das, Mater. Res. Bull. 101, 190–198 (2018)

    Google Scholar 

  12. S.S. Deshmukh, A.V. Humbe, A. Kumar, R.G. Dorik, K.M. Jadhav, J. Alloys Compd. 704, 227–236 (2017)

    Google Scholar 

  13. S. Perumbilavil, A. López-Ortega, G.K. Tiwari, J. Nogués, T. Endo, R. Philip, Small 14, 1701001 (2018)

    Google Scholar 

  14. S. Perumbilavil, K. Sridharan, A.R. Abraham, H.P. Janardhanan, N. Kalarikkal, R. Philip, RSC Adv. 6, 106754–106761 (2016)

    Google Scholar 

  15. K. Mani Rahulan, T. Sahoo, N. Angeline Little Flower, I. Phebe Kokila, G. Vinitha, R. Annie Sujatha, Opt. Laser Technol. 109, 313–318 (2019)

    ADS  Google Scholar 

  16. M. Nadafan, M. Parishani, Z. Dehghani, J.Z. Anvari, R. Malekfar, Optik (Stuttg) 144, 672–678 (2017)

    ADS  Google Scholar 

  17. A. Jafari, B. Zeynizadeh, S. Darvishi, J. Mol. Liq. 253, 119–126 (2018)

    Google Scholar 

  18. S. Yuvaraj, N. Manikandan, G. Vinitha, Opt. Mater. (Amst) 73, 428–436 (2017)

    ADS  Google Scholar 

  19. T. Huang, Z. Hao, H. Gong, Z. Liu, S. Xiao, S. Li, Y. Zhai, S. You, Q. Wang, J. Qin, Chem. Phys. Lett. 451, 213–217 (2008)

    ADS  Google Scholar 

  20. A. Allafchian, S.A.H. Jalali, H. Bahramian, H. Ahmadvand, J. Magn. Magn. Mater. 404, 14–20 (2016)

    ADS  Google Scholar 

  21. M.I.A. Abdel Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.S. Abd-Elmonem, H.A.M. Hendawy, E.K. Abdel-Khalek, S. Labib, E. Abdeltwab, M.M. El-Okr, Mater. Sci. Eng., C 92, 644–656 (2018)

    Google Scholar 

  22. L. Schmidt, S. Mahn, E. Kemnitz, RSC Adv. 7, 56266 (2017)

    Google Scholar 

  23. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, J. Photochem. Photobiol. B Biol. 190, 8–20 (2019)

    Google Scholar 

  24. R. SinghYadav, I. Kuřitka, J. Havlica, M. Hnatko, C. Alexander, J. Masilko, L. Kalina, M. Hajdúchová, J. Rusnak, V. Enev, J. Magn. Magn. Mater. 447, 48–57 (2018)

    ADS  Google Scholar 

  25. R. Norouzbeigi, S. Majdabadi Farahani, J. Magn. Magn. Mater. 384, 289–295 (2015)

    ADS  Google Scholar 

  26. A. Alexandar, P. Surendran, S. SakthyPriya, A. Lakshmanan, P. Rameshkumar, J. Nonlinear Opt. Phys. Mater. 25, 1650037 (2016)

    ADS  Google Scholar 

  27. R. Sivakami, S. Dhanuskodi, R. Karvembu, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 152, 43–50 (2016)

    ADS  Google Scholar 

  28. H.-Y. He, Part. Sci. Technol. 34, 143–151 (2016)

    Google Scholar 

  29. R. Sharma, S. Singhal, Phys. B Condens. Matter 414, 83–90 (2013)

    ADS  Google Scholar 

  30. A.A. Al-Ghamdi, F.S. Al-Hazmi, L.S. Memesh, F.S. Shokr, L.M. Bronstein, Ceram. Int. 43, 6192–6200 (2017)

    Google Scholar 

  31. S. Yuvaraj, N. Manikandan, G. Vinitha, Mater. Res. Express 4, 115027 (2017)

    ADS  Google Scholar 

  32. S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, V.N. Singh, J. Mol. Struct. 1076, 55–62 (2014)

    ADS  Google Scholar 

  33. R.R. Reddy, Y. Nazeer Ahammed, Infrared Phys. Technol. 36, 825–830 (1995)

    ADS  Google Scholar 

  34. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, J. Mater. Sci.: Mater. Electron. 28, 7991–8001 (2017)

    Google Scholar 

  35. G. Vijayaprasath, R. Murugan, T. Mahalingam, Y. Hayakawa, G. Ravi, Ceram. Int. 41, 10607–10615 (2015)

    Google Scholar 

  36. P. Geetha Devi, A. Sakthi Velu, J. Mater. Sci.: Mater. Electron. 27, 10833–10840 (2016)

    Google Scholar 

  37. M. Vadivel, R.R. Babu, M. Arivanandhan, K. Ramamurthi, Y. Hayakawa, RSC Adv. 5, 27060–27068 (2015)

    Google Scholar 

  38. R. Deivakumaran, G. Sathya, S.K. Suresh Babu, L. John Berchmans, J. Mater. Sci.: Mater. Electron. 28, 1726–1739 (2017)

    Google Scholar 

  39. M. Abdullah Dar, K. Majid, K.M. Batoo, R.K. Kotnala, J. Alloys Compd. 632, 307–320 (2015)

    Google Scholar 

  40. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, V. Enev, M. Hajdúchová, J. Phys. Chem. Solids 107, 150–161 (2017)

    ADS  Google Scholar 

  41. S. Gowreesan, A.R. Kumar, Chinese. J. Phys. 56, 1262–1272 (2018)

    Google Scholar 

  42. P. Umarani, K. Jagannathan, Phys. B Condens. Matter 530, 215–221 (2018)

    ADS  Google Scholar 

  43. D.R. Penn, Phys. Rev. 128, 2093–2097 (1962)

    ADS  Google Scholar 

  44. N.M. Ravindra, R.P. Bhardwaj, K.S. Kumar, V.K. Srivastava, Infrared Phys. 21, 369–381 (1981)

    ADS  Google Scholar 

  45. R.R. Reddy, Y.N. Ahammed, M.R. Kumar, J. Phys. Chem. Solids 56, 825–829 (1995)

    ADS  Google Scholar 

  46. S.M. Mian, B. Taheri, J.P. Wicksted, J. Opt. Soc. Am. B 13, 2671 (1996)

    ADS  Google Scholar 

  47. S. Sakthy Priya, A. Alexandar, P. Surendran, A. Lakshmanan, P. Rameshkumar, P. Sagayaraj, Opt. Mater. (Amst). 66, 434–441 (2017)

    ADS  Google Scholar 

  48. B. Nisha, Y. Vidyalakshmi, D. Geetha, J. Ruhena Parveen, G. Vinitha, Appl. Phys. B 125, 123 (2019)

    ADS  Google Scholar 

  49. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, J. Phys. Chem. Solids 112, 106–118 (2018)

    ADS  Google Scholar 

  50. G. Nagaraju, K. Karthik, M. Shashank, Microchem. J. 147, 749–754 (2019)

    Google Scholar 

  51. K. Karthik, M. Shashank, V. Revathi, T. Tatarchuk, Mol. Cryst. Liq. Cryst. 673, 70–80 (2018)

    Google Scholar 

  52. A. Lakshmanan, P. Surendran, S. SakthyPriya, K. Balakrishnan, T.A. Hegde, G. Vinitha, G. Ramalingam, B. Ravindran, S.W. Chang, M.S. Elshikh, A.H. Mahmoud, D.A. Al Farraj, P. Rameshkumar, J. King Saud Univ. Sci. (2019). https://doi.org/10.1016/j.jksus.2019.11.031

    Article  Google Scholar 

  53. K. Karthik, S. Dhanuskodi, S. Prabukumar, S. Sivaramakrishnan, Optik (Stuttg) 204, 164221–164227 (2020)

    Google Scholar 

  54. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Sivaramakrishnan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 139, 7–12 (2015)

    ADS  Google Scholar 

  55. S.V. Bhosale, P.S. Ekambe, S.V. Bhoraskar, V.L. Mathe, Appl. Surf. Sci. 441, 724 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

One of the authors P. Surendran is grateful to UGC-NFHE [F1-17.1/2015-16/NFST-2015-17-ST-TAM-1335], and A. Lakshmanan wishes to thank the UGC-RGNF [F1-17.1/2016-17/RGNF-2015-17-SC-TAM-21802] New Delhi, India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rameshkumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surendran, P., Lakshmanan, A., Priya, S.S. et al. Investigations on solid-state parameters of third-order nonlinear optical Ni1−xZnxFe2O4 nanoparticles synthesized by microwave-assisted combustion method. Appl. Phys. A 126, 257 (2020). https://doi.org/10.1007/s00339-020-3435-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3435-6

Keywords

Navigation