Skip to main content
Log in

Enhanced penetration strategies for transdermal delivery

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Transdermal delivery offers several advantages in drug distribution, including convenience, painless administration, avoidance of first-pass metabolism, and ease of termination. However, the natural protective barriers of the skin, such as the stratum corneum, the topmost layer of skin, limit the systemic absorption of external therapeutics via transdermal delivery. Therefore, extensive application of transdermal delivery in medical treatment has been limited. Over the past few years, many formulation strategies and physical technologies, therefore, have been developed to enhance transdermal delivery. This review summarizes various formulation strategies proposed for transdermal delivery and their application in medical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin J F, Zhu L L, Xu H M, Wang H F, Feng X Q, Zhu X P, Zhou Q. The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient Preference and Adherence, 2015, 9: 923–942

    PubMed  PubMed Central  Google Scholar 

  2. Rowland M. Influence of route of administration on drug availability. Journal of Pharmaceutical Sciences, 1972, 61(1): 70–74

    CAS  PubMed  Google Scholar 

  3. Duchene D, Touchard F, Peppas N. Pharmaceutical and medical aspects of bioadhesive systems for drug administration. Drug Development and Industrial Pharmacy, 1988, 14(2-3): 283–318

    CAS  Google Scholar 

  4. Prausnitz M R, Langer R. Transdermal drug delivery. Nature Biotechnology, 2008, 26(11): 1261–1268

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Prausnitz M R, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nature Reviews. Drug Discovery, 2004, 3(2): 115–124

    CAS  PubMed  Google Scholar 

  6. Kalluri H, Banga A K. Transdermal delivery of proteins. AAPS PharmSciTech, 2011, 12(1): 431–441

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Carter P, Narasimhan B, Wang Q. Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. International Journal of Pharmaceutics, 2019, 555: 49–62

    CAS  PubMed  Google Scholar 

  8. Alkilani A, McCrudden M T, Donnelly R. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics, 2015, 7(4): 438–470

    CAS  PubMed  Google Scholar 

  9. Chen Y, Shen Y, Guo X, Zhang C, Yang W, Ma M, Liu S, Zhang M, Wen L P. Transdermal protein delivery by a coadministered peptide identified via phage display. Nature Biotechnology, 2006, 24(4): 455–460

    CAS  PubMed  Google Scholar 

  10. Lopes L B, Garcia M T J, Bentley M V L. Chemical penetration enhancers. Therapeutic Delivery, 2015, 6(9): 1053–1061

    CAS  PubMed  Google Scholar 

  11. Chen Y, Quan P, Liu X, Wang M, Fang L. Novel chemical permeation enhancers for transdermal drug delivery. Asian Journal of Pharmaceutical Sciences, 2014, 9(2): 51–64

    Google Scholar 

  12. Pham Q D, Björklund S, Engblom J, Topgaard D, Sparr E. Chemical penetration enhancers in stratum corneum—relation between molecular effects and barrier function. Journal of Controlled Release, 2016, 232: 175–187

    CAS  PubMed  Google Scholar 

  13. Tscheik C, Blasig I E, Winkler L. Trends in drug delivery through tissue barriers containing tight junctions. Tissue Barriers, 2013, 1 (2): e24565

    PubMed  PubMed Central  Google Scholar 

  14. Pathan I B, Setty C M. Chemical penetration enhancers for transdermal drug delivery systems. Tropical Journal of Pharmaceutical Research, 2009, 8(2): 173–179

    CAS  Google Scholar 

  15. Karande P, Jain A, Ergun K, Kispersky V, Mitragotri S. Design principles of chemical penetration enhancers for transdermal drug delivery. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(13): 4688–4693

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Haque T, Talukder M M U. Chemical Enhancer: A simplistic way to modulate barrier function of the stratum corneum. Advanced Pharmaceutical Bulletin, 2018, 8(2): 169–179

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ibrahim S A, Li S K. Efficiency of fatty acids as chemical penetration enhancers: Mechanisms and structure enhancement relationship. Pharmaceutical Research, 2010, 27(1): 115–125

    CAS  PubMed  Google Scholar 

  18. Lane M E. Skin penetration enhancers. International Journal of Pharmaceutics, 2013, 447(1-2): 12–21

    CAS  PubMed  Google Scholar 

  19. Kandimalla K, Kanikkannan N, Andega S, Singh M. Effect of Fatty acids on the permeation of melatonin across rat and pig skin in-vitro and on the transepidermal water loss in rats in-vivo. Journal of Pharmacy and Pharmacology, 1999, 51(7): 783–790

    CAS  PubMed  Google Scholar 

  20. Aungst B J J, Rogers N, Shefter E. Enhancement of naloxone penetration through human skin in vitro using fatty acids, fatty alcohols, surfactants, sulfoxides and amides. International Journal of Pharmaceutics, 1986, 33(1): 225–234

    CAS  Google Scholar 

  21. Aungst B J. Structure/Effect studies of fatty acid isomers as skin penetration enhancers and skin irritants. Pharmaceutical Research, 1989, 6(3): 244–247

    CAS  PubMed  Google Scholar 

  22. Ongpipattanakul B, Burnette R R, Potts R O, Francoeur M L. Evidence that oleic acid exists in a separate phase within stratum corneum lipids. Pharmaceutical Research, 1991, 8(3): 350–354

    CAS  PubMed  Google Scholar 

  23. Babu R J, Chen L, Kanikkannan N. Fatty alcohols, fatty acids, and fatty acid esters as penetration enhancers. Springer Berlin Heidelberg location: Springer Berlin Heidelberg, 2015, 133–150

    Google Scholar 

  24. Parivesh S, Sumeet D, Abhishek D. Design, evaluation, parameters and marketed products of transdermal patches: A review. Journal of Pharmacy Research, 2010, 3(2): 235–240

    CAS  Google Scholar 

  25. Jordan W P Jr, Atkinson L E, Lai C. Comparison of the skin irritation potential of two testosterone transdermal systems: An investigational system and a marketed product. Clinical Therapeutics, 1998, 20(1): 80–87

    CAS  PubMed  Google Scholar 

  26. Williams A C, Barry B W. Penetration enhancers. Advanced Drug Delivery Reviews, 2012, 64(Suppl): 128–137

    Google Scholar 

  27. Liu P, Cettina M, Wong J. Effects of isopropanol-isopropyl myristate binary enhancers on in vitro transport of estradiol in human epidermis: A mechanistic evaluation. Journal of Pharmaceutical Sciences, 2009, 98(2): 565–572

    CAS  PubMed  Google Scholar 

  28. Watkinson R M, Herkenne C, Guy R H, Hadgraft J, Oliveira G, Lane M E. Influence of ethanol on the solubility, ionization and permeation characteristics of Ibuprofen in silicone and human skin. Skin Pharmacology and Physiology, 2009, 22(1): 15–21

    CAS  PubMed  Google Scholar 

  29. Wischke C, Schwendeman S P. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. International Journal of Pharmaceutics, 2008, 364(2): 298–327

    CAS  PubMed  Google Scholar 

  30. Andega S, Kanikkannan N, Singh M. Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin. Journal of Controlled Release, 2001, 77(1): 17–25

    CAS  PubMed  Google Scholar 

  31. Dias M, Naik A, Guy R H, Hadgraft J, Lane M E. In vivo infrared spectroscopy studies of alkanol effects on human skin. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69(3): 1171–1175

    CAS  PubMed  Google Scholar 

  32. Jampilek J, Brychtova K. Azone analogues: Classification, design, and transdermal penetration principles. Medicinal Research Reviews, 2012, 32(5): 907–947

    CAS  PubMed  Google Scholar 

  33. Harrison J E, Watkinson A C, Green DM, Hadgraft J, Brain K. The relative effect of azone and transcutol on permeant diffusivity and solubility in human stratum corneum. Pharmaceutical Research, 1996, 13(4): 542–546

    CAS  PubMed  Google Scholar 

  34. Harrison J E, Groundwater P W, Brain K R, Hadgraft J. Azone® induced fluidity in human stratum corneum. A fourier transform infrared spectroscopy investigation using the perdeuterated analogue. Journal of Controlled Release, 1996, 41(3): 283–290

    CAS  Google Scholar 

  35. Hadgraft J. Passive enhancement strategies in topical and transdermal drug delivery. International Journal of Pharmaceutics, 1999, 184(1): 1–6

    CAS  PubMed  Google Scholar 

  36. Hadgraft J, Peck J, Williams D G, PughWJ, Allan G. Mechanisms of action of skin penetration enhancers/retarders: Azone and analogues. International Journal of Pharmaceutics, 1996, 141(1): 17–25

    CAS  Google Scholar 

  37. Zou L L, Ma J L, Wang T, Yang T B, Liu C B. Cell-penetrating peptide-mediated therapeutic molecule delivery into the central nervous system. Current Neuropharmacology, 2013, 11(2): 197–208

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Stalmans S, Bracke N, Wynendaele E, Gevaert B, Peremans K, Burvenich C, Polis I, De Spiegeleer B. Cell-penetrating peptides selectively cross the blood-brain barrier in vivo. PLoS One, 2015, 10(10): e0139652

    PubMed  PubMed Central  Google Scholar 

  39. Liu X, Zhang P, Rödl W, Maier K, Lächelt U, Wagner E. Toward artificial immunotoxins: Traceless reversible conjugation of RNase A with receptor targeting and endosomal escape domains. Molecular Pharmaceutics, 2017, 14(5): 1439–1449

    CAS  PubMed  Google Scholar 

  40. Wagner E, Zenke M, Cotten M, Beug H, Birnstiel M L. Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(9): 3410–3414

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schwarze S R, Ho A, Vocero-Akbani A, Dowdy S F. In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science, 1999, 285(5433): 1569–1572

    CAS  PubMed  Google Scholar 

  42. Erazo-Oliveras A, Najjar K, Dayani L, Wang T Y, Johnson G A, Pellois J P. Protein delivery into live cells by incubation with an endosomolytic agent. Nature Methods, 2014, 11(8): 861–867

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kamada H, Okamoto T, Kawamura M, Shibata H, Abe Y, Ohkawa A, Nomura T, Sato M, Mukai Y, Sugita T, et al. Creation of novel cell-penetrating peptides for intracellular drug delivery using systematic phage display technology originated from Tat transduction domain. Biological & Pharmaceutical Bulletin, 2007, 30(2): 218–223

    CAS  Google Scholar 

  44. Tang H, Yin L, Kim K H, Cheng J. Helical poly(arginine) mimics with superior cell-penetrating and molecular transporting properties. Chemical Science (Cambridge), 2013, 4(10): 3839–3844

    CAS  Google Scholar 

  45. Lozano M V, Lollo G, Alonso-Nocelo M, Brea J, Vidal A, Torres D, Alonso M J. Polyarginine nanocapsules: A new platform for intracellular drug delivery. Journal of Nanoparticle Research, 2013, 15(3): 1515

    Google Scholar 

  46. Rothbard J B, Garlington S, Lin Q, Kirschberg T, Kreider E, McGrane P L, Wender P A, Khavari P A. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nature Medicine, 2000, 6(11): 1253–1257

    CAS  PubMed  Google Scholar 

  47. Kim Y C, Ludovice P J, Prausnitz M R. Transdermal delivery enhanced by magainin pore-forming peptide. Journal of Controlled Release, 2007, 122(3): 375–383

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jung E, Lee J, Park J, Park D. Transdermal delivery of interferon-γ (IFN-γ) mediated by penetratin, a cell-permeable peptide. Biotechnology and Applied Biochemistry, 2005, 42(2): 169–173

    PubMed  Google Scholar 

  49. Hsu T, Mitragotri S. Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(38): 15816–15821

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin C M, Huang K, Zeng Y, Chen X C, Wang S, Li Y. A simple, noninvasive and efficient method for transdermal delivery of siRNA. Archives of Dermatological Research, 2012, 304(2): 139–144

    CAS  PubMed  Google Scholar 

  51. Candan G, Michiue H, Ishikawa S, Fujimura A, Hayashi K, Uneda A, Mori A, Ohmori I, Nishiki T I, Matsui H, Tomizawa K. Combining poly-arginine with the hydrophobic counter-anion 4-(1-pyrenyl)-butyric acid for protein transduction in transdermal delivery. Biomaterials, 2012, 33(27): 6468–6475

    CAS  PubMed  Google Scholar 

  52. Gautam A, Nanda J S, Samuel J S, Kumari M, Priyanka P, Bedi G, Nath S K, Mittal G, Khatri N, Raghava G P S. Topical delivery of protein and peptide esing novel cell penetrating peptide IMT-P8. Scientific Reports, 2016, 6(1): 26278

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang T, Qu H, Li X, Zhao B, Zhou J, Li Q, Sun M. Transmembrane delivery and biological effect of human growth hormone via a phage displayed peptide in vivo and in vitro. Journal of Pharmaceutical Sciences, 2010, 99(12): 4880–4891

    CAS  PubMed  Google Scholar 

  54. Chang M, Li X, Sun Y, Cheng F,Wang Q, Xie X, Zhao W, Tian X. Effect of cationic cyclopeptides on transdermal and transmembrane delivery of insulin. Molecular Pharmaceutics, 2013, 10(3): 951–957

    CAS  PubMed  Google Scholar 

  55. Cevc G, Blume G. New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes. Biochimica et Biophysica Acta (BBA)-. Biomembranes, 2001, 1514(2): 191–205

    CAS  Google Scholar 

  56. Cevc G, Schätzlein A, Blume G. Transdermal drug carriers: Basic properties, optimization and transfer efficiency in the case of epicutaneously applied peptides. Journal of Controlled Release, 1995, 36(1): 3–16

    CAS  Google Scholar 

  57. Al Shuwaili A H, Rasool B K A, Abdulrasool A A. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 102: 101–114

    PubMed  Google Scholar 

  58. Benson H A. Transfersomes for transdermal drug delivery. Expert Opinion on Drug Delivery, 2006, 3(6): 727–737

    CAS  PubMed  Google Scholar 

  59. Jain S, Jain P, Umamaheshwari R, Jain N. Transfersomes—a novel vesicular carrier for enhanced transdermal delivery: Development, characterization, and performance evaluation. Drug Development and Industrial Pharmacy, 2003, 29(9): 1013–1026

    CAS  PubMed  Google Scholar 

  60. Cevc G. Transdermal drug delivery of insulin with ultradeformable carriers. Clinical Pharmacokinetics, 2003, 42(5): 461–474

    CAS  PubMed  Google Scholar 

  61. Rai S, Pandey V, Rai G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art. Nano Reviews & Experiments, 2017, 8(1): 1325708

    Google Scholar 

  62. Wang J, Wei Y, Fei Y R, Fang L, Zheng H S, Mu C F, Li F Z, Zhang Y S. Preparation of mixed monoterpenes edge activated PEGylated transfersomes to improve the in vivo transdermal delivery efficiency of sinomenine hydrochloride. International Journal of Pharmaceutics, 2017, 533(1): 266–274

    CAS  PubMed  Google Scholar 

  63. Liu J, Li W, Teng H, Lin Z. Immunopharmacological action of sinomenine, an alkaloid isolated from Sinomenium acutum, and its mechanism of action in treating rheumatoid arthritis. Acta Pharmaceutica Sinica, 2005, 40(2): 127–131 (in Chinese)

    CAS  PubMed  Google Scholar 

  64. Feng H, Yamaki K, Takano H, Inoue K, Yanagisawa R, Yoshino S. Effect of sinomenine on collagen-induced arthritis in mice. Autoimmunity, 2007, 40(7): 532–539

    CAS  PubMed  Google Scholar 

  65. Han W, Li W, Wang X, Zhang H, Sun Y, Hao B. Preparation of sinomenine hydrochloride loaded nano flexible liposomes and their characteristics. Chinese Traditional and Herbal Drugs, 2011, 42(4): 671–675 (in Chinese)

    CAS  Google Scholar 

  66. Ward A, Clissold S P. Pentoxifylline. Drugs, 1987, 34(1): 50–97

    CAS  PubMed  Google Scholar 

  67. Smith R V, Waller E S, Doluisio J T, Bauza M T, Puri S K, Ho I, Lassman H B. Pharmacokinetics of orally administered pentoxifylline in humans. Journal of Pharmaceutical Sciences, 1986, 75(1): 47–52

    CAS  PubMed  Google Scholar 

  68. Rames A, Poirier JM, LeCoz F, Midavaine M, Lecocq B, Grange J D, Poupon R, Cheymol G, Jaillon P. Pharmacokinetics of intravenous and oral pentoxifylline in healthy volunteers and in cirrhotic patients. Clinical Pharmacology and Therapeutics, 1990, 47(3): 354–359

    CAS  PubMed  Google Scholar 

  69. Bryce T, Chamberlain J, Hillbeck D, Macdonald C. Metabolism and pharmacokinetics of 14C-pentoxifylline in healthy volunteers. Arzneimittel-Forschung, 1989, 39(4): 512–517

    CAS  PubMed  Google Scholar 

  70. Jiang T, Wang T, Li T, Ma Y, Shen S, He B, Mo R. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma. ACS Nano, 2018, 12(10): 9693–9701

    CAS  PubMed  Google Scholar 

  71. Bangham A D, Horne R. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. Journal of Molecular Biology, 1964, 8(5): 660–668

    CAS  PubMed  Google Scholar 

  72. Petersen A L, Hansen A E, Gabizon A, Andresen T L. Liposome imaging agents in personalized medicine. Advanced Drug Delivery Reviews, 2012, 64(13): 1417–1435

    CAS  PubMed  Google Scholar 

  73. Zhang P, He D, Klein P M, Liu X, Röder R, Döblinger M, Wagner E. Enhanced intracellular protein transduction by sequence defined tetra-oleoyl oligoaminoamides targeted for cancer therapy. Advanced Functional Materials, 2015, 25(42): 6627–6636

    CAS  Google Scholar 

  74. Eloy J O, Claro de Souza M, Petrilli R, Barcellos J P A, Lee R J, Marchetti J M. Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids and Surfaces. B, Biointerfaces, 2014, 123: 345–363

    CAS  PubMed  Google Scholar 

  75. Duong A D, Collier M A, Bachelder E M, Wyslouzil B E, Ainslie K M. One step encapsulation of small molecule drugs in liposomes via electrospray-remote loading. Molecular Pharmaceutics, 2016, 13(1): 92–99

    CAS  PubMed  Google Scholar 

  76. Huwyler J, Wu D, Pardridge W M. Brain drug delivery of small molecules using immunoliposomes. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93 (24): 14164–14169

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gregoriadis G, Neerunjun D E. Control of the rate of hepatic uptake and catabolism of liposome-entrapped proteins injected into rats. Possible therapeutic applications. European Journal of Biochemistry, 1974, 47(1): 179–185

    CAS  PubMed  Google Scholar 

  78. Tan M L, Choong P F, Dass C R. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides, 2010, 31(1): 184–193

    CAS  PubMed  Google Scholar 

  79. Chatin B, Mével M, Devallière J, Dallet L, Haudebourg T, Peuziat P, Colombani T, Berchel M, Lambert O, Edelman A, Pitard B. Liposome-based formulation for intracellular delivery of functional proteins. Molecular Therapy. Nucleic Acids, 2015, 4: e244

    CAS  PubMed  Google Scholar 

  80. Rahimpour Y, Hamishehkar H. Liposomes in cosmeceutics. Expert Opinion on Drug Delivery, 2012, 9(4): 443–455

    CAS  PubMed  Google Scholar 

  81. Sacha M, Faucon L, Hamon E, Ly I, Haltner-Ukomadu E. Ex vivo transdermal absorption of a liposome formulation of diclofenac. Biomedicine and Pharmacotherapy, 2019, 111: 785–790

    CAS  PubMed  Google Scholar 

  82. Yang G, Lee H E, Shin S W, Um S H, Lee J D, Kim K B, Kang H C, Cho Y Y, Lee H S, Lee J Y. Efficient transdermal delivery of DNA nanostructures alleviates atopic dermatitis symptoms in NC/Nga mice. Advanced Functional Materials, 2018, 28(40): 1801918

    Google Scholar 

  83. Yamazaki N, Sugimoto T, Fukushima M, Teranishi R, Kotaka A, Shinde C, Kumei T, Sumida Y, Munekata Y, Maruyama K I, et al. Dual-stimuli responsive liposomes using pH- and temperaturesensitive polymers for controlled transdermal delivery. Polymer Chemistry, 2017, 8(9): 1507–1518

    CAS  Google Scholar 

  84. Donnelly R F, Singh T R R, Woolfson A D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Delivery, 2010, 17(4): 187–207

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Larrañeta E, McCrudden M T C, Courtenay A J, Donnelly R F. Microneedles: A new frontier in nanomedicine delivery. Pharmaceutical Research, 2016, 33(5): 1055–1073

    PubMed  PubMed Central  Google Scholar 

  86. Liu X, Wang C, Liu Z. Protein-engineered biomaterials for cancer theranostics. Advanced Healthcare Materials, 2018, 7(20): 1800913

    Google Scholar 

  87. Ye Y, Yu J, Wen D, Kahkoska A R, Gu Z. Polymeric microneedles for transdermal protein delivery. Advanced Drug Delivery Reviews, 2018, 127: 106–118

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Waghule T, Singhvi G, Dubey S K, Pandey M M, Gupta G, Singh M, Dua K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomedicine and Pharmacotherapy, 2019, 109: 1249–1258

    CAS  PubMed  Google Scholar 

  89. Larrañeta E, Lutton R E M, Woolfson A D, Donnelly R F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Materials Science and Engineering R Reports, 2016, 104: 1–32

    Google Scholar 

  90. Moffatt K, Wang Y, Raj Singh T R, Donnelly R F. Microneedles for enhanced transdermal and intraocular drug delivery. Current Opinion in Pharmacology, 2017, 36: 14–21

    CAS  PubMed  Google Scholar 

  91. McGrath M G, Vrdoljak A, O’Mahony C, Oliveira J C, Moore A C, Crean A M. Determination of parameters for successful spray coating of silicon microneedle arrays. International Journal of Pharmaceutics, 2011, 415(1): 140–149

    CAS  PubMed  Google Scholar 

  92. Vrdoljak A, McGrath M G, Carey J B, Draper S J, Hill A V S, O’Mahony C, Crean A M, Moore A C. Coated microneedle arrays for transcutaneous delivery of live virus vaccines. Journal of Controlled Release, 2012, 159(1): 34–42

    CAS  PubMed  Google Scholar 

  93. Gill H S, Prausnitz M R. Coated microneedles for transdermal delivery. Journal of Controlled Release, 2007, 117(2): 227–237

    CAS  PubMed  Google Scholar 

  94. Chen X, Corbett H J, Yukiko S R, Raphael A P, Fairmaid E J, Prow T W, Brown L E, Fernando G J P, Kendall M A F. Site-selectively coated, densely-packed microprojection array patches for targeted delivery of vaccines to skin. Advanced Functional Materials, 2011, 21(3): 464–473

    CAS  Google Scholar 

  95. Baek S H, Shin J H, Kim Y C. Drug-coated microneedles for rapid and painless local anesthesia. Biomedical Microdevices, 2017, 19 (1): 2

    PubMed  Google Scholar 

  96. Boehm R D, Miller P R, Hayes S L, Monteiro- Riviere N A, Narayan R J. Modification of microneedles using inkjet printing. AIP Advances, 2011, 1(2): 022139

    CAS  PubMed Central  Google Scholar 

  97. Yao G, Quan G, Lin S, Peng T,Wang Q, Ran H, Chen H, Zhang Q, Wang L, Pan X, Wu C. Novel dissolving microneedles for enhanced transdermal delivery of levonorgestrel: In vitro and in vivo characterization. International Journal of Pharmaceutics, 2017, 534(1-2): 378–386

    CAS  PubMed  Google Scholar 

  98. Wang C, Ye Y, Hochu G M, Sadeghifar H, Gu Z. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of Anti-PD1 antibody. Nano Letters, 2016, 16(4): 2334–2340

    CAS  PubMed  Google Scholar 

  99. Johnson A R, Caudill C L, Tumbleston J R, Bloomquist C J, Moga K A, Ermoshkin A, Shirvanyants D, Mecham S J, Luft J C, De Simone J M. Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLoS One, 2016, 11(9): e0162518

    PubMed  PubMed Central  Google Scholar 

  100. Caudill C L, Perry J L, Tian S, Luft J C, Desimone J M. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. Journal of Controlled Release, 2018, 284: 122–132

    CAS  PubMed  Google Scholar 

  101. Chen M C, Huang S F, Lai K Y, Ling M H. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials, 2013, 34(12): 3077–3086

    CAS  PubMed  Google Scholar 

  102. Prausnitz M R, Mikszta J A, Cormier M, Andrianov A K. Microneedle-based Vaccines. Springer Berlin Heidelberg location: Springer Berlin Heidelberg, 2009, 369–393

    Google Scholar 

  103. Cheng G, Davoudi Z, Xing X, Yu X, Cheng X, Li Z, Deng H, Wang Q. Advanced silk fibroin biomaterials for cartilage regeneration. ACS Biomaterials Science & Engineering, 2018, 4 (8): 2704–2715

    CAS  Google Scholar 

  104. Zhan Y, Zeng W, Jiang G,Wang Q, Shi X, Zhou Z, Deng H, Du Y. Construction of lysozyme exfoliated rectorite-based electrospun nanofibrous membranes for bacterial inhibition. Journal of Applied Polymer Science, 2015, 132(8): 41496

    Google Scholar 

  105. Xin S, Li X,Wang Q, Huang R, Xu X, Lei Z, Deng H. Novel layerby-layer structured nanofibrous mats coated by protein films for dermal regeneration. Journal of Biomedical Nanotechnology, 2014, 10(5): 803–810

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Xiaowen Liu acknowledges support by the startup funding from Jinan University and the Fundamental Research Funds for the Central Universities (No. 11618337), the National Natural Science Foundation of China (Grant No. 81903546).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Genlong Jiao or Xiaowen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Q., Yu, Y., Chen, D. et al. Enhanced penetration strategies for transdermal delivery. Front. Chem. Sci. Eng. 14, 378–388 (2020). https://doi.org/10.1007/s11705-019-1913-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1913-1

Keywords

Navigation