Skip to main content
Log in

Citric acid-crosslinked β-cyclodextrin supported zinc peroxide as a biocompatible H2O2 scavenger

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate the H2O2 scavenging activity of the ZnO2/β-CD as a biocompatible composite. Zinc peroxide was prepared via sonochemical approach. To synthesize a green composite, β-cyclodextrin was modified by citric acid (CA) and reacted with ZnO2 under ultrasonic irradiation. The prepared samples were characterized using XRD, SEM, TGA and FTIR analytical techniques. XRD analysis exhibited a typical pattern of ZnO2 and demonstrated the presence of citric acid and β-cyclodextrin in composite. The results of the catalytic assay showed that the ZnO2/CA-βCD composite displayed stronger capability to decompose H2O2 in comparison to ZnO2 particles (about seven times). It was attributed to increased adsorption capacity and solubility of composite due to the presence of citric acid and β-cyclodextrin. MTT assay studies confirmed the non-cytotoxic nature of ZnO2 particles and ZnO2/CA-βCD composite.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. SaiSrinivas U, Tan WQB, Vellayappan BA, Jeyasekharan AD (2019) ROS and the DNA damage response in cancer. Redox Biol 25:101084–101092

    Article  Google Scholar 

  2. Ahmad W, Ijaz B, Shabbiri K, Ahmed F, Rehman S (2017) Oxidative toxicity in diabetes and Alzheimer’s disease: mechanisms behind ROS/RNS generation. J Biomed Sci 24:76–85

    Article  Google Scholar 

  3. Pollari E, Goldsteins G, Bart G, Koistinaho J, Giniatullin R (2014) The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis. Front Cell Neurosci 8:131–138

    Article  Google Scholar 

  4. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A (2017) Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev 3:1–13

    Google Scholar 

  5. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462

    Article  CAS  Google Scholar 

  6. Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J Med 54:287–293

    Article  Google Scholar 

  7. Mahammed A, Gross Z (2011) The importance of developing metal complexes with pronounced catalase-like activity. Catal Sci Technol 1:535–540

    Article  CAS  Google Scholar 

  8. Fang YC, Lin HC, Hsu IJ, Lin TS, Mou CY (2011) Bioinspired design of a Cu–Zn–imidazolate mesoporous silica catalyst system for superoxide dismutation. J Phys Chem C 115:20639–20652

    Article  CAS  Google Scholar 

  9. Ledesma GN, Eury H, Anxolabéhère-Mallart E, Hureau C, Signorella SR (2015) A new mononuclear manganese(III) complex of an unsymmetrical hexadentate N3O3 ligand exhibiting superoxide dismutase and catalase-like activity: synthesis, characterization, properties and kinetics studies. J Inorg Biochem 146:69–76

    Article  CAS  Google Scholar 

  10. Doctrow SR, Liesa M, Melov S, Shirihai OS, Tofilon P (2012) Salen Mn complexes are superoxide dismutase/catalase mimetics that protect the mitochondria. Curr Inorg Chem 2:325–334

    Article  CAS  Google Scholar 

  11. Pio di Cagno M (2017) The potential of cyclodextrins as novel active pharmaceutical ingredients: a short overview. Molecules 22:1–14

    Article  Google Scholar 

  12. Shelley H, Jayachandra BR (2018) Role of cyclodextrins in nanoparticle based drug delivery systems. J Pharm Sci 107:1741–1753

    Article  CAS  Google Scholar 

  13. Samir Ali S, Morsy R, El-Zawawy NA, Fareed MF, Bedaiwy MY (2017) Synthesized zinc peroxide nanoparticles (ZnO2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds. Int J Nanomed 12:6059–6073

    Article  Google Scholar 

  14. Tran CD, Makuvaza J, Munson E, Bennett B (2017) Biocompatible copper oxide nanoparticle composites from cellulose and chitosan: facile synthesis, unique structure, and antimicrobial activity. ACS Appl Mater Interfaces 9:42503–42515

    Article  CAS  Google Scholar 

  15. Dinca V, Mocanu A, Isopencu G, Busuioc C, Brajnicov S, Vlad A, Icriverzi M, Roseanu A, Dinescu M, Stroescu M, Stoica-Guzun A, Suchea M (2018) Biocompatible pure ZnO nanoparticles-3D bacterial cellulose biointerfaces with antibacterial properties. Arab J Chem 13:3521–3533

    Article  Google Scholar 

  16. Datz S, Illes B, Gößl D, Schirnding CV, Engelke H, Bein T (2018) Biocompatible crosslinked β-cyclodextrin nanoparticles as multifunctional carriers for cellular delivery. Nanoscale 10:16284–16292

    Article  CAS  Google Scholar 

  17. Chaleawlert-umpon S, Nuchuchua O, Saesoo S, Gonil P, Ruktanonchai UR, Sajomsang W, Pimpha N (2011) Effect of citrate spacer on mucoadhesive properties of a novel water-soluble cationic–cyclodextrin-conjugated chitosan. Carbohydr Polym 84:186–194

    Article  CAS  Google Scholar 

  18. Huang W, Hu Y, Li Y, Zhou Y, Niu D, Lei Z, Zhang Z (2018) Citric acid-crosslinked β-cyclodextrin for simultaneous removal of bisphenol A, methylene blue and copper: the roles of cavity and surface functional groups. J Taiwan Inst Chem Eng 82:189–197

    Article  CAS  Google Scholar 

  19. Lousada CM, Yang M, Nilsson K, Jonsson M (2013) Catalytic decomposition of hydrogen peroxide on transition metal and lanthanide oxides. J Mol Catal A Chem 379:178–184

    Article  CAS  Google Scholar 

  20. Ghasemi Z, Azizi S, Salehi R, Kafil HS (2018) Synthesis of azo dyes possessing N-heterocycles and evaluation of their anticancer and antibacterial properties. Monatshefte für Chemie Chem Mon 149:149–157

    Article  CAS  Google Scholar 

  21. Azizi S, Soleymani J, Hasanzadeh M (2020) Iron oxide magnetic nanoparticles supported on amino propyl-functionalized KCC-1 as robust recyclable catalyst for one pot and green synthesis of tetrahydrodipyrazolopyridines and cytotoxicity evaluation. Appl Organomet Chem 34:5440–5449

    Google Scholar 

  22. Egyed O (1990) Spectroscopic studies on β-cyclodextrin. Vib Spectrosc 1:225–227

    Article  CAS  Google Scholar 

  23. Mu J, Wang Y, Zhao M, Zhang L (2012) Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun 48:2540–2542

    Article  CAS  Google Scholar 

  24. Baldim V, Bedioui F, Mignet N, Margaill I, Berret J-F (2018) The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale 10:6971–6980

    Article  CAS  Google Scholar 

  25. Gao L, Fan K, Yan X (2017) Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics 7:3207–3227

    Article  CAS  Google Scholar 

  26. Yao J, Cheng Y, Zhou M, Zhao S, Lin S, Wang X, Wu J, Li S, Wei H (2018) ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem Sci 9:2927–2933

    Article  CAS  Google Scholar 

  27. Lousada CM, Johansson AJ, Brinck T, Jonsson M (2012) Mechanism of H2O2 decomposition on transition metal oxide surfaces. J Phys Chem C 116:9533–9543

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Research Affairs of University of Tabriz for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahtab Pirouzmand.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirouzmand, M., Sani, P.S., Ghasemi, Z. et al. Citric acid-crosslinked β-cyclodextrin supported zinc peroxide as a biocompatible H2O2 scavenger. J Biol Inorg Chem 25, 411–417 (2020). https://doi.org/10.1007/s00775-020-01771-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01771-6

Keywords

Navigation