Skip to main content

Advertisement

Log in

Comparison of botulinum toxin type A and aprotinin monotherapy with combination therapy in healing of burn wounds in an animal model

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Burns are one of the most common injuries that are complicated by many challenges including infection, severe inflammatory response, excessive expression of proteases, and scar formation. The aim of this study was to investigate the effect of botulinum toxin type A (BO) and aprotinin (AP) separately or in combination (BO-AP) in healing process. Four burn wounds were created in each rat and randomly filled with silver sulfadiazine (SSD), BO, AP and BO-AP. The rats were euthanized after 7, 14, and 28 days, and their harvested wound samples were evaluated by gross pathology, histopathology, gene expression, biochemical testing, and scanning electron microscopy. Both BO and AP significantly reduced expression of interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) at the 7th post wounding day. Moreover, they inhibited scar formation by reducing the TGF-β1 level and increasing basic fibroblast growth factor (bFGF) at the 28th day. AP by decreasing protease production showed more effective role than BO in wound regeneration. AP increased tissue organization and maturation and improved cosmetic appearance of wounds, at 28 days. The best results gained when combination of BO and AP were used in healing of burn wounds. Treatment by BO-AP significantly subsided inflammation compared to the BO, AP, and SSD treated wounds. Treatment with BO-AP also reduced collagen density and led to minimal scar formation. Combination of botulinum toxin type A and aprotinin considerably increased structural and functional properties of the healing wounds by reducing scar formation and decreasing production of proteases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang Y, Beekman J, Hew J et al (2018) Burn injury: challenges and advances in burn wound healing, infection, pain and scarring. Adv Drug Deliv Rev 123:3–17

    CAS  PubMed  Google Scholar 

  2. Mohammadi AA, Bakhshaeekia AR, Marzban S et al (2011) Early excision and skin grafting versus delayed skin grafting in deep hand burns (a randomised clinical controlled trial). Burns 37(1):36–41

    PubMed  Google Scholar 

  3. Mohammadi AA, Jafari SMS, Kiasat M et al (2013) Effect of fresh human amniotic membrane dressing on graft take in patients with chronic burn wounds compared with conventional methods. Burns 39(2):349–353

    PubMed  Google Scholar 

  4. Mohammadi A, Johari HG (2008) Amniotic membrane: a skin graft fixator convenient for both patient and surgeon. Burns 34(7):1051–1052

    PubMed  Google Scholar 

  5. Oryan A, Alemzadeh E, Moshiri A (2017) Burn wound healing: present concepts, treatment strategies and future directions. J Wound Care 26(1):5–19

    CAS  PubMed  Google Scholar 

  6. Wood FM (2014) Skin regeneration: the complexities of translation into clinical practise. Int J Biochem Cell Biol 56:133–140

    CAS  PubMed  Google Scholar 

  7. Mohammadi AA, Jafari SMS, Kiasat M et al (2013) Efficacy of debridement and wound cleansing with 2% hydrogen peroxide on graft take in the chronic-colonized burn wounds; a randomized controlled clinical trial. Burns 39(6):1131–1136

    PubMed  Google Scholar 

  8. Oryan A, Naeini AT, Nikahval B et al (2010) Effect of aqueous extract of Aloe vera on experimental cutaneous wound healing in rat. Veterinarski Arhiv 80(4):509–522

    Google Scholar 

  9. Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10):2648–2659

    CAS  PubMed  Google Scholar 

  10. Goel A, Shrivastava P (2010) Post-burn scars and scar contractures. Indian J Plast Surg 43(Suppl):S63

    PubMed  PubMed Central  Google Scholar 

  11. Procter F (2010) Rehabilitation of the burn patient. Indian J Plast Surg 43(Suppl):S101

    PubMed  PubMed Central  Google Scholar 

  12. Evers LH, Bhavsar D, Mailänder P (2010) The biology of burn injury. Exp Dermatol 19(9):777–783

    PubMed  Google Scholar 

  13. Hermans MH (2005) A general overview of burn care. Int Wound J 2(3):206–220

    PubMed  Google Scholar 

  14. Van Baar M, Essink-Bot M-L, Oen I et al (2006) Functional outcome after burns: a review. Burns 32(1):1–9

    PubMed  Google Scholar 

  15. Lee B-J, Jeong J-H, Wang S-G et al (2009) Effect of botulinum toxin type a on a rat surgical wound model. Clin Exp Otorhinolaryngol 2(1):20

    PubMed  PubMed Central  Google Scholar 

  16. Yang L, Witten TM, Pidaparti RM (2013) A biomechanical model of wound contraction and scar formation. J Theor Biol 332:228–248

    PubMed  Google Scholar 

  17. Gassner HG, Sherris DA (2003) Chemoimmobilization: improving predictability in the treatment of facial scars. Plast Reconstr Surg 112(5):1464–1466

    PubMed  Google Scholar 

  18. Sa G, DiPietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229

    Google Scholar 

  19. Nielson CB, Duethman NC, Howard JM et al (2017) Burns: pathophysiology of systemic complications and current management. J Burn Care Res 38(1):e469–e481

    PubMed  Google Scholar 

  20. McCarty SM, Percival SL (2013) Proteases and delayed wound healing. Adv Wound Care 2(8):438–447

    Google Scholar 

  21. Supuran CT, Scozzafava A, Clare BW (2002) Bacterial protease inhibitors. Med Res Rev 22(4):329–372

    CAS  PubMed  Google Scholar 

  22. Supuran CT, Scozzafava A, Mastrolorenzo A (2001) Bacterial proteases: current therapeutic use and future prospects for the development of new antibiotics. Expert Opin Ther Pat 11(2):221–259

    Google Scholar 

  23. Stadelmann W, Greenwald D, Stevens L et al (1993) Mechanical analysis of the effects of bacteria and aprotinin on skin wound healing in adult guinea pigs. Wound Repair Regen 1(3):187–193

    CAS  PubMed  Google Scholar 

  24. Tabandeh MR, Oryan A, Mohammadalipour A (2014) Polysaccharides of Aloe vera induce MMP-3 and TIMP-2 gene expression during the skin wound repair of rat. Int J Biol Macromol 65:424–430

    CAS  PubMed  Google Scholar 

  25. Oryan A, Goodship AE, Silver IA (2008) Response of a collagenase-induced tendon injury to treatment with a polysulphated glycosaminoglycan (Adequan). Connect Tissue Res 49(5):351–360

    CAS  PubMed  Google Scholar 

  26. Oryan A, Moshiri A, Meimandiparizi A-H (2011) Effects of sodium-hyaluronate and glucosamine-chondroitin sulfate on remodeling stage of tenotomized superficial digital flexor tendon in rabbits: a clinical, histopathological, ultrastructural, and biomechanical study. Connect Tissue Res 52(4):329–339

    CAS  PubMed  Google Scholar 

  27. Oryan A, Khalafi-Nezhad A, Toloo N et al (2007) Effects of 4-chloro-2, 6-bis-(2-hydroxyl-benzyl)-phenol on healing of skin wounds and growth of bacteria. Transbound Emerg Dis 54(10):585–591

    CAS  Google Scholar 

  28. Oryan A, Zaker S (1998) Effects of topical application of honey on cutaneous wound healing in rabbits. Zentralbl Veterinarmed A 45(1–10):181–188

    CAS  PubMed  Google Scholar 

  29. Li LJ, Wang MZ, Yuan TJ et al (2019) The crude ethanol extract of Periplaneta americana L. stimulates wound healing in vitro & in vivo. Chin Med 14:33. https://doi.org/10.1186/s13020-019-0259-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meimandi-Parizi A, Oryan A, Moshiri A (2013) Tendon tissue engineering and its role on healing of the experimentally induced large tendon defect model in rabbits: a comprehensive in vivo study. PLoS ONE 8(9):e73016

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Farina JA, Rosique MJ, Rosique RG (2013) Curbing inflammation in burn patients. Int J Inflam. https://doi.org/10.1155/2013/715645

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ashcroft GS, Lei K, Jin W et al (2000) Secretory leukocyte protease inhibitor mediates non-redundant functions necessary for normal wound healing. Nat Med 6(10):1147

    CAS  PubMed  Google Scholar 

  33. Seo GY, Lim Y, Koh D et al (2017) TMF and glycitin act synergistically on keratinocytes and fibroblasts to promote wound healing and anti-scarring activity. Exp Mol Med 49(3):e302

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Thomson KS, Dupras SK, Murry CE et al (2014) Proangiogenic microtemplated fibrin scaffolds containing aprotinin promote improved wound healing responses. Angiogenesis 17(1):195–205

    CAS  PubMed  Google Scholar 

  35. Gassner HG, Brissett AE, Otley CC et al (2006) Botulinum toxin to improve facial wound healing: a prospective, blinded, placebo-controlled study. Mayo Clin Proc 81(8):1023–1028

    CAS  PubMed  Google Scholar 

  36. Aoki KR (2003) Pharmacology and immunology of botulinum toxin type A. Clin Dermatol 21(6):476–480

    PubMed  Google Scholar 

  37. Gassner HG, Sherris DA, Otley CC (2000) Treatment of facial wounds with botulinum toxin A improves cosmetic outcome in primates. Plast Reconstr Surg 105(6):1948–1953

    CAS  PubMed  Google Scholar 

  38. Koutsioumpa M, Hatziapostolou M, Mikelis C et al (2009) Aprotinin stimulates angiogenesis and human endothelial cell migration through the growth factor pleiotrophin and its receptor protein tyrosine phosphatase β/ζ. Eur J Pharmacol 602(2–3):245–249

    CAS  PubMed  Google Scholar 

  39. Abdallah IHH, Dali NB, Jurjus RA et al (2012) Rat model of burn wound healing: effect of Botox. J Biol Regul Homeost Agents 26(3):389–400

    Google Scholar 

  40. Ziade M, Domergue S, Batifol D et al (2013) Use of botulinum toxin type A to improve treatment of facial wounds: a prospective randomised study. J Plast Reconstr Aesthet Surg 66(2):209–214

    PubMed  Google Scholar 

  41. Frick CG, Richtsfeld M, Sahani ND et al (2007) Long-term effects of botulinum toxin on neuromuscular function. Anesthesiology 106(6):1139–1146

    CAS  PubMed  Google Scholar 

  42. Roh TS, Hong JW, Lee WJ et al (2013) The Effects of botulinum toxin A on collagen synthesis, expression of MMP (matrix metalloproteinases)-1,2,9 and TIMP (tissue inhibitors of metalloproteinase)-1 in the keloid fibroblasts. Arch Aesthetic Plast Surg 19(2):114–119

    Google Scholar 

  43. Xiao Z, Qu G (2012) Effects of botulinum toxin type a on collagen deposition in hypertrophic scars. Molecules 17(2):2169–2177

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pruksapong C, Yingtaweesittikul S, Burusapat C (2017) Efficacy of botulinum toxin a in preventing recurrence keloids: double blinded randomized controlled trial study: Intraindividual subject. J Med Assoc Thai 100(3):280–286

    PubMed  Google Scholar 

  45. Li YH, Yang JM, Liu JQ et al (2018) A randomized, placebo-controlled, double-blind, prospective clinical trial of botulinum toxin type A in prevention of hypertrophic scar development in median sternotomy wound. Aesth Plast Surg 42:1364–1369

    Google Scholar 

  46. Hu L, Zou Y, Chang SJ et al (2018) Effects of botulinum toxin on improving facial surgical scars: a prospective, split-scar, double-blind, randomized controlled trial. Plast Reconstr Surg 141:646–650

    CAS  PubMed  Google Scholar 

  47. Fanous A, Bezdjian A, Caglar D (2019) Treatment of keloid scars with botulinum toxin A versus triamcinolone in an athymic nude mice animal model. Plast Reconstr Surg 143(3):760–767

    CAS  PubMed  Google Scholar 

  48. Hao R, Li Z, Chen X et al (2018) Efficacy and possible mechanisms of botulinum toxin type A on hypertrophic scarring. J Cosmet Dermatol 17:340–346

    PubMed  Google Scholar 

  49. Lebeda FJ, Dembek ZF, Adler M (2012) Kinetic and reaction pathway analysis in the application of botulinum toxin A for wound healing. J Toxicol. https://doi.org/10.1155/2012/159726

    Article  PubMed  Google Scholar 

  50. Giannandrea M, Parks WC (2014) Diverse functions of matrix metalloproteinases during fibrosis. Dis Models 7(2):193–203

    CAS  Google Scholar 

  51. Pakyari M, Farrokhi A, Maharlooei MK et al (2013) Critical role of transforming growth factor beta in different phases of wound healing. Adv Wound Care 2(5):215–224

    Google Scholar 

  52. Wagner W, Wehrmann M (2007) Differential cytokine activity and morphology during wound healing in the neonatal and adult rat skin. J Cell Mol Med 11(6):1342–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Aarabi S, Longaker MT, Gurtner GC (2007) Hypertrophic scar formation following burns and trauma: new approaches to treatment. PLoS Med 4(9):e234

    PubMed  PubMed Central  Google Scholar 

  54. Shi H-X, Lin C, Lin B-B et al (2013) The anti-scar effects of basic fibroblast growth factor on the wound repair in vitro and in vivo. PLoS ONE 8(4):e59966

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Xiao Z, Zhang F, Lin W et al (2010) Effect of botulinum toxin type a on transforming growth factor β1 in fibroblasts derived from hypertrophic scar: a preliminary report. Aesthet Plast Surg 34(4):424–427

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the authorities of the Veterinary School, Shiraz University for their kind cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Oryan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oryan, A., Alemzadeh, E. Comparison of botulinum toxin type A and aprotinin monotherapy with combination therapy in healing of burn wounds in an animal model. Mol Biol Rep 47, 2693–2702 (2020). https://doi.org/10.1007/s11033-020-05367-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05367-w

Keywords

Navigation