Skip to main content

Advertisement

Log in

MicroRNA-489-3p Represses Hepatic Stellate Cells Activation by Negatively Regulating the JAG1/Notch3 Signaling Pathway

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

The transformation of hepatic stellate cells (HSCs) into collagen-producing myofibroblasts is a key event in hepatic fibrogenesis. Recent studies have shown that microRNAs (miRNAs) play a critical role in the transformation of HSCs. However, the function of miR-489-3p in liver fibrosis remains unclear.

Methods

Here, we detected the levels of miR-489-3p and jagged canonical Notch ligand 1 (JAG1) in liver fibrosis by using CCl4-treated rats as an in vivo model and transforming growth factor-beta 1 (TGF-β1)-treated HSC cell lines LX-2 and HSC-T6 as in vitro models. The expression of profibrotic markers was affected by transfecting LX-2 cells with either miR-489-3p mimic or si-JAG1. A dual-luciferase reporter assay was carried out to study the interaction of JAG1 with miR-489-3p.

Results

We found that miR-489-3p was remarkably decreased while JAG1 was increased in liver fibrosis models both in vivo and in vitro. Overexpression of miR-489-3p reduced the expression of profibrotic markers and the activation of LX-2 cells induced by TGF-β1. Moreover, miR-489-3p decreased the expression of jagged canonical Notch ligand 1 (JAG1) in LX-2 cells by interacting with its 3ʹ-UTR. As JAG1 is a Notch ligand, decreased JAG1 by miR-489-3p inhibited the Notch signaling pathway. Moreover, the downregulation of JAG1 inhibited the expression of fibrotic markers.

Conclusion

Our results indicate that miR-489-3p can inhibit HSC activation by inhibiting the JAG1/Notch3 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tsochatzis EA, Bosch J, Burroughs AK. Liver cirrhosis. Lancet (London, England). 2014;383:1749–1761. https://doi.org/10.1016/s0140-6736(14)60121-5.

    Article  Google Scholar 

  2. Pimpin L, Cortez-Pinto H, Negro F, et al. Burden of liver disease in Europe: epidemiology and analysis of risk factors to identify prevention policies. J Hepatol. 2018;69:718–735. https://doi.org/10.1016/j.jhep.2018.05.011.

    Article  PubMed  Google Scholar 

  3. Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14:397–411. https://doi.org/10.1038/nrgastro.2017.38.

    Article  CAS  PubMed  Google Scholar 

  4. Puche JE, Saiman Y, Friedman SL. Hepatic stellate cells and liver fibrosis. Compr Physiol. 2013;3:1473–1492. https://doi.org/10.1002/cphy.c120035.

    Article  PubMed  Google Scholar 

  5. Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis. Clinica chimica acta. Int J Clin Chem. 2006;364:33–60. https://doi.org/10.1016/j.cca.2005.06.014.

    Article  CAS  Google Scholar 

  6. Pinheiro D, Dias I, Ribeiro Silva K, et al. Mechanisms underlying cell therapy in liver fibrosis: an overview. Cells.. 2019;. https://doi.org/10.3390/cells8111339.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Meurette O, Mehlen P. Notch Signaling in the tumor microenvironment. Cancer Cell.. 2018;34:536–548. https://doi.org/10.1016/j.ccell.2018.07.009.

    Article  CAS  PubMed  Google Scholar 

  8. Hu B, Phan SH. Notch in fibrosis and as a target of anti-fibrotic therapy. Pharmacol Res. 2016;108:57–64. https://doi.org/10.1016/j.phrs.2016.04.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Edeling M, Ragi G, Huang S, Pavenstadt H, Susztak K. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nature Reviews Nephrology.. 2016;12:426–439. https://doi.org/10.1038/nrneph.2016.54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen Y, Zheng S, Qi D, et al. Inhibition of Notch signaling by a gamma-secretase inhibitor attenuates hepatic fibrosis in rats. PloS ONE. 2012;7:e46512. https://doi.org/10.1371/journal.pone.0046512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen YX, Weng ZH, Zhang SL. Notch3 regulates the activation of hepatic stellate cells. World J Gastroenterol. 2012;18:1397–1403. https://doi.org/10.3748/wjg.v18.i12.1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang M, Chang A, Choi M, Zhou D, Anania FA, Shin CH. Antagonistic interaction between Wnt and Notch activity modulates the regenerative capacity of a zebrafish fibrotic liver model. Hepatology (Baltimore, Md).. 2014;60:1753–1766. https://doi.org/10.1002/hep.27285.

    Article  CAS  PubMed Central  Google Scholar 

  13. Condorelli AG, Logli E, Cianfarani F, et al. MicroRNA-145-5p regulates fibrotic features of recessive dystrophic epidermolysis bullosa skin fibroblasts. Br J Dermatol. 2019;181:1017–1027. https://doi.org/10.1111/bjd.17840.

    Article  CAS  PubMed  Google Scholar 

  14. Chen X, Xiao W, Chen W, et al. MicroRNA-26a and -26b inhibit lens fibrosis and cataract by negatively regulating Jagged-1/Notch signaling pathway. Cell Death Differ. 2017;24:1431–1442. https://doi.org/10.1038/cdd.2016.152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao S, Xiao X, Sun S, et al. MicroRNA-30d/JAG1 axis modulates pulmonary fibrosis through Notch signaling pathway. Pathol Res Pract. 2018;214:1315–1323. https://doi.org/10.1016/j.prp.2018.02.014.

    Article  CAS  PubMed  Google Scholar 

  16. Sawitza I, Kordes C, Reister S, Haussinger D. The niche of stellate cells within rat liver. Hepatology (Baltimore, Md).. 2009;50:1617–1624. https://doi.org/10.1002/hep.23184.

    Article  CAS  Google Scholar 

  17. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol cell Biol. 2014;15:509–524. https://doi.org/10.1038/nrm3838.

    Article  CAS  PubMed  Google Scholar 

  18. Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol cell Biol. 2019;20:21–37. https://doi.org/10.1038/s41580-018-0045-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Piperigkou Z, Gotte M, Theocharis AD, Karamanos NK. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Adv Drug Deliv Rev. 2018;129:16–36. https://doi.org/10.1016/j.addr.2017.10.008.

    Article  CAS  PubMed  Google Scholar 

  20. Wei S, Wang Q, Zhou H, et al. miR-455-3p alleviates hepatic stellate cell activation and liver fibrosis by suppressing HSF1 expression. Mol Ther Nucleic Acids. 2019;16:758–769. https://doi.org/10.1016/j.omtn.2019.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li J, Qu W, Jiang Y, et al. miR-489 Suppresses proliferation and invasion of human bladder cancer cells. Oncol Res. 2016;24:391–398. https://doi.org/10.3727/096504016x14666990347518.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wu Q, Han L, Yan W, et al. miR-489 inhibits silica-induced pulmonary fibrosis by targeting MyD88 and Smad3 and is negatively regulated by lncRNA CHRF. Sci Rep. 2016;6:30921. https://doi.org/10.1038/srep30921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang K, Liu F, Zhou LY, et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res. 2014;114:1377–1388. https://doi.org/10.1161/circresaha.114.302476.

    Article  CAS  PubMed  Google Scholar 

  24. Marcellin P, Gane E, Buti M, et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet (London, England).. 2013;381:468–751. https://doi.org/10.1016/s0140-6736(12)61425-1.

    Article  CAS  Google Scholar 

  25. Guruharsha KG, Kankel MW, Artavanis-Tsakonas S. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet. 2012;13:654–666. https://doi.org/10.1038/nrg3272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang S, Park J, Qiu C, et al. Jagged1/Notch2 controls kidney fibrosis via Tfam-mediated metabolic reprogramming. PLoS Biol. 2018;16:e2005233. https://doi.org/10.1371/journal.pbio.2005233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137:216–233. https://doi.org/10.1016/j.cell.2009.03.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang K, Zhang YQ, Ai WB, et al. Hes1, an important gene for activation of hepatic stellate cells, is regulated by Notch1 and TGF-beta/BMP signaling. World J Gastroenterol. 2015;21:878–887. https://doi.org/10.3748/wjg.v21.i3.878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo X, Wang XF. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 2009;19:71–88. https://doi.org/10.1038/cr.2008.302.

    Article  CAS  PubMed  Google Scholar 

  30. Dewidar B, Meyer C, Dooley S, Meindl-Beinker AN. TGF-beta in hepatic stellate cell activation and liver fibrogenesis-updated 2019. Cells. 2019;. https://doi.org/10.3390/cells8111419.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Innovation Cultivation Program of Zhongnan Hospital of Wuhan University [znpy2018095] and the National Natural Science Foundation of China [81670554].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongling Wang.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest in this article.

Ethical approval

The Committee on the Ethics of Animal Experiments of the Wuhan University School of Medicine approved the animal experimental procedures (permit number: 2017055).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Dong, S., Ye, M. et al. MicroRNA-489-3p Represses Hepatic Stellate Cells Activation by Negatively Regulating the JAG1/Notch3 Signaling Pathway. Dig Dis Sci 66, 143–150 (2021). https://doi.org/10.1007/s10620-020-06174-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06174-w

Keywords

Navigation