Skip to main content
Log in

Preparation of Fe3+-doped TiO2 aerogels for photocatalytic reduction of CO2 to methanol

  • Original Paper: Sol–gel and hybrid materials for catalytic, photoelectrochemical, and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Developing an efficient photocatalyst to reduce CO2 to methanol is still a major challenge. In this paper, the Fe3+-doped TiO2 aerogels were prepared by sol–gel process. Implantation of Fe3+ into TiO2 lattice can not only narrow the band gap of electron transfer, but also suppress the recombination of photogenerated electron–hole pairs. However, when the doping content of Fe3+ was increased to 5 mol %, partial Fe3+ ions may enter into the lattice gap and decrease the stability of the excited electrons. The UV–Vis diffuse reflectance spectra, photoluminescence (PL) spectra, and UV-excited photoelectron spectroscopy (UPS) were used to study the effect of the Fe3+ doping amount on the photoelectric properties of the aerogels. The photocatalytic conversion of CO2 to methanol was used to evaluate their catalytic performances upon illumination by a 300 W Xe lamp.

The corresponding band alignments indicated that the Fe3+-doped TiO2 aerogels may photocatalytically reduce CO2 to methanol.

Highlights

  • The Fe3+-doped TiO2 aerogels were prepared by sol–gel process.

  • Photocatalytic reduction of CO2 over the Fe–TiO2 aerogels was studied on the basis of energetic grounds.

  • Low doping amount of Fe3+ prolonged the lifetime of the excited electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tseng I, Chang W, Wu J (2002) Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl Catal B Environ 37:37–48

    Article  CAS  Google Scholar 

  2. Truong Q, Le T, Liu J, Chung C, Ling Y (2012) Synthesis of TiO2 nanoparticles using novel titanium oxalate complex towards visible light-driven photocatalytic reduction of CO2 to CH3OH. Appl Catal A Gen 437:28–35

    Article  Google Scholar 

  3. Akple MS, Low J, Qin Z, Wageh S, Al-Ghamdi AA, Yu J, Liu S (2015) Nitrogen-doped TiO2 microsheets with enhanced visible light photocatalytic activity for CO2 reduction. Chin J Catal 36:2127–2134

    Article  CAS  Google Scholar 

  4. Kumar A, Rana A, Sharma G, Sharma S, Naushad M, Mola GT, Dhiman P, Stadler FJ (2018) Aerogels and meta-organic frameworks for environmental remediation and energy production. Environ Chem Lett 16:797–820

    Article  CAS  Google Scholar 

  5. Mo CM, Li YH, Liu YS, Zhang Y, Zhang LD (1998) Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aerogels. J Appl Phys 83:4389–4391

    Article  CAS  Google Scholar 

  6. Owens BB, Passerini S, Smyrl WH (1999) Lithium ion insertion in porous metal oxides. Electrochim Acta 45:215–224

    Article  CAS  Google Scholar 

  7. Long JW, Swider KE, Merzbacher CI, Rolison DR (1999) Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: the nature of capacitance in nanostructured materials. Langmuir 15:780–785

    Article  CAS  Google Scholar 

  8. Pajonk GM (1991) Aerogel catalysts. Appl Catal 72:217–266

    Article  CAS  Google Scholar 

  9. Blanchard F, Reymond JP, Pommier B, Teichner SJ (1982) On the mechanism of the Fischer–Tropsch synthesis involving unreduced iron catalyst. J Mol Catal 17:171–181

    Article  CAS  Google Scholar 

  10. Yoldas BE, Annen MJ, Bostaph J (2000) Chemical engineering of aerogel morphology formed under nonsupercritical conditions for thermal insulation. Chem Mater 12:2475–2484

    Article  CAS  Google Scholar 

  11. Conroy JFT, Hosticka B, Davis SC, Smith AN, Norris PM (1999) Microscale thermal relaxation during acoustic propagation in aerogel and other porous media. Microsc Therm 3:199–215

    Article  Google Scholar 

  12. Monahan JL, Arachchige IU, Brock SL (2005) Porous semiconductor chalcogenide aerogels. Science 307:397–400

    Google Scholar 

  13. Eychmüller A (2005) Aerogels from semiconductor nanomaterials. Angew Chem Int Ed 44:4839–4841

    Article  Google Scholar 

  14. Abdullah H, Khan MR, Ong HR, Yaakob Z (2017) Modified TiO2 photocatalyst for CO2 photocatalytic reduction: an overview. J CO2 Util 22:15–32

  15. Liu G, Hoivik N, Wang K, Jakobsen H (2012) Engineering TiO2 nanomaterials for CO2 conversion/solar fuels. Sol Energ Mat Sol C 105:53–68

    Article  CAS  Google Scholar 

  16. Popa M, Diamandescu L, Vasiliu F, Teodorescu CM, Cosoveanu V, Baia M, Feder M, Baia L, Danciu V (2009) Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels. J Mater Sci 44:358–364

    Article  CAS  Google Scholar 

  17. Tian C, Sheng W, Tan H, Jiang H, Xiong C (2018) Fabrication of lattice-doped TiO2 nanofibers by vapor-phase growth for visible light-driven N2 conversion to ammonia. ACS Appl Mater Interfaces 10:37453–37460

    Article  CAS  Google Scholar 

  18. Liu M, Gan L, Zhu D, Xu Z, Hao Z, Chen L (2011) Fe-doped TiO2/SiO2 aerogel microspheres for visible light photocatalysis degradation of methylene blue. Adv Mater Res 239:2993–2996

    Article  Google Scholar 

  19. Li G, Zhu T, Deng Z, Zhang Y, Jiao F, Zhang H (2011) Preparation of Cu-SiO2 composite aerogel by ambient drying and the influence of synthesizing conditions on the structure of the aerogel. Chin Sci Bull 56:685–690

    Article  CAS  Google Scholar 

  20. Wang C, Lai D (2011) Synthesis and characterization of iron- and vanadium-doped titania aerogel nanopowders. J Am Ceram Soc 94:2646–2651

    Article  CAS  Google Scholar 

  21. Li H, Zhu D, Yang Z (2019) The effect of formamide on the microstructure of SnO2 aerogels. J Sol-Gel Sci Technol 90:305–312

    Article  CAS  Google Scholar 

  22. Feng Q, Cai H, Lin H, Qin S, Liu Z, Ma D, Ye Y (2018) Synthesis and structural characteristics of high surface area TiO2 aerogels by ultrasonic-assisted sol-gel method. Nanotechnology 29:075702

    Article  Google Scholar 

  23. Abdullah H, Khan M, Pudukudy M, Yaakob Z, Ismail NA (2015) CeO2-TiO2 as a visible light active catalyst for the photoreduction of CO2 to methanol. J Rare Earth 33:1155–1161

    Article  CAS  Google Scholar 

  24. Saroj S, Singh L, Ranjan R, Singh SV (2019) Enhancement of photocatalytic activity and regeneration of Fe-doped TiO2(Ti1-xFexO2) nanocrystalline particles synthesized using inexpensive TiO2 precursor. Res Chem Intermed 45:1883–1906

    Article  CAS  Google Scholar 

  25. He H, Lu J (2017) Highly photocatalytic activities of magnetically separable reduced graphene oxide-CoFe2O4 hybrid nanostructures in dye photodegradation. Sep Purif Technol 172:374–381

    Article  CAS  Google Scholar 

  26. He H, He Z, Shen Q (2018) Efficient hydrogen evolution catalytic activity of graphene/metallic MoS2 nanosheet heterostructures synthesized by a one-step hydrothermal process. Int J Hydrog Energy 43:21835–21843

    Article  CAS  Google Scholar 

  27. Li Y, Yang J, Zheng S, Zeng W, Zhao N, Shen M (2016) One-pot synthesis of 3D TiO2-reduced graphene oxide aerogels with superior adsorption capacity and enhanced visible-light photocatalytic performance. Ceram Int 2:19091–19096

    Article  Google Scholar 

  28. Zhang HX, He XD, He F (2009) Microstructural characterization and properties of ambient-dried SiO2 matrix aerogel doped with opacified TiO2 powder. J Alloy Compd 469:366–369

    Article  CAS  Google Scholar 

  29. Fang Q, Meier M, Yu J, Wang Z, Zhang J, Wu J, Kenyon A, Hoffmann P, Boyd IW (2003) FTIR and XPS investigation of Er-doped SiO2-TiO2 films. Mater Sci Eng B105:209–213

    Article  CAS  Google Scholar 

  30. Luu CL, Nguyen QT, Ho ST, Nguyen T (2013) Characterization of the thin layer photocatalysts TiO2 and V2O5- and Fe2O3-doped TiO2 prepared by the sol-gel method. Adv Nat Sci Nanosci Nanotechnol 4:035003

    Article  Google Scholar 

  31. Xiong C, Kim MJ, Balkus KJ (2006) TiO2 nanofibers and core-shell structures prepared using mesoporous molecular sieves as templates. Small 2:52–55

    Article  CAS  Google Scholar 

  32. Li H, Zhu L, Ma C, Zhang H (2013) TiO2 hollow microspheres: synthesis, photocatalytic activity, and selectivity for a mixture of organic dyes. Monatsh Chem 145:29–37

    Article  Google Scholar 

  33. Moradi H, Eshaghi A, Hosseini SR, Ghani K (2016) Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation. Ultrason Sonochem 32:314–319

    Article  CAS  Google Scholar 

  34. Song W, Yoshitake M (2005) A work function study of ultra-thin alumina formation on NiAl(110) surface. Appl Surf Sci 251:14–18

    Article  CAS  Google Scholar 

  35. Wu X, Zhao J, Wang L, Han M, Zhang M, Wang H, Huang H, Liu Y, Kang Z (2017) Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light. Appl Catal B Environ 206:501–509

    Article  CAS  Google Scholar 

  36. Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang Z (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347:970–974

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by special funds for guiding local scientific and technological development by China government (ZY2019HN0904), Key Scientific & Technological Project of Hainan Province (ZDKJ2017011), National Key Research and Development Program of China (2016YFC0700804), and National Natural Science Foundation of China (51562008 and 51761010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunrong Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Ye, X., He, J. et al. Preparation of Fe3+-doped TiO2 aerogels for photocatalytic reduction of CO2 to methanol. J Sol-Gel Sci Technol 95, 353–359 (2020). https://doi.org/10.1007/s10971-020-05260-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05260-9

Keywords

Navigation