Skip to main content
Log in

Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Atomically precise gold (Au) nanoclusters (NCs) as visible light photosensitizers supported on the substrate for photoredox catalysis have attracted considerable attentions. However, efficient control of their photocatalytic activity and long-term stability is still challenging. Herein, we report a coordination-assisted self-assembly strategy in combination with electrostatic interaction to sandwich Au25(Capt)18 (abbreviated as Au25, Capt = captopril) NCs between an inner core and an outer shell made of UiO-66, denoted as UiO-66@Au25@UiO-66. Notably, the sandwich-like nanocomposite displays significantly enhanced catalytic activity along with an excellent stability when used in the selective photocatalytic aerobic oxidation of sulfide to sulfoxide. As comparison, Au25 NCs simply located at the outer surface or insider matrix of UiO-66 (short as Au25/UiO-66 and Au25@UiO-66) show poor stability and low conversion, respectively. This structure regulated difference in the catalytic performances of three nanocomposites is assigned to the varied distribution of active sites (Au NCs) in metal-organic frameworks (MOFs). This work offers the opportunity for application of nanoclusters in catalysis, energy conversion and even biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Du, X. S.; Jin, R. C. Atomically precise metal nanoclusters for catalysis. ACS Nano2019, 13, 7383–7387.

    Article  CAS  Google Scholar 

  2. Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev.2020, 120, 526–622.

    Article  CAS  Google Scholar 

  3. Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res.2013, 46, 1749–1758.

    Article  CAS  Google Scholar 

  4. Wan, X. K.; Wang, J. Q.; Nan, Z. A.; Wang, Q. M. Ligand effects in catalysis by atomically precise gold nanoclusters. Sci. Adv.2017, 3, e1701823.

    Article  Google Scholar 

  5. Shi, R.; Cao, Y. H.; Bao, Y. J.; Zhao, Y. F.; Waterhouse, G. I. N.; Fang, Z. Y.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Self-assembled Au/Cdse nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution. Adv. Mater.2017, 29, 1700803.

    Article  Google Scholar 

  6. Zhang, Q. F.; Chen, X. N.; Wang, L. S. Toward solution syntheses of the tetrahedral Au20 pyramid and atomically precise gold nanoclusters with uncoordinated sites. Acc. Chem. Res.2018, 51, 2159–2168.

    Article  CAS  Google Scholar 

  7. Gan, Z. B.; Xia, N.; Wu, Z. K. Discovery, mechanism, and application of antigalvanic reaction. Acc. Chem. Res.2018, 51, 2774–2783.

    Article  CAS  Google Scholar 

  8. Cheng, H. F.; Yang, N. L.; Lu, Q. P.; Zhang, Z. C.; Zhang, H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv. Mater.2018, 30, 1707189.

    Article  Google Scholar 

  9. Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev.2016, 116, 10346–10413.

    Article  CAS  Google Scholar 

  10. Ye, H. H.; Wang, Q. X.; Catalano, M.; Lu, N.; Vermeylen, J.; Kim, M. J.; Liu, Y. Z.; Sun, Y. G.; Xia, X. H. Ru nanoframes with an FCC structure and enhanced catalytic properties. Nano Lett.2016, 16, 2812–2817.

    Article  CAS  Google Scholar 

  11. Liu, S. Q.; Xu, Y. J. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis. Sci. Rep.2016, 6, 22742.

    Article  CAS  Google Scholar 

  12. Weng, B.; Lu, K. Q.; Tang, Z. C.; Chen, H. M.; Xu, Y. J. Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nat. Commun.2018, 9, 1543.

    Article  Google Scholar 

  13. Li, H. L.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature1999, 402, 276–279.

    Article  CAS  Google Scholar 

  14. Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science2005, 309, 2040–2042.

    Article  Google Scholar 

  15. Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H. L. Metal-organic frameworks: Structures and functional applications. Mater. Today2019, 27, 43–68.

    Article  CAS  Google Scholar 

  16. Chen, Y. Z.; Wang, Z. U.; Wang, H. W.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: The roles of photothermal effect and Pt electronic state. J. Am. Chem. Soc.2017, 139, 2035–2044.

    Article  CAS  Google Scholar 

  17. Luo, Y. C.; Fan, S. Y.; Yu, W. Q.; Wu, Z. L.; Cullen, D. A.; Liang, C. L.; Shi, J. Y.; Su, C. Y. Fabrication of Au25(SG)18-ZIF-8 nanocomposites: A facile strategy to position Au25(SG)18 nanoclusters inside and outside ZIF-8. Adv. Mater.2018, 30, 1704576.

    Article  Google Scholar 

  18. Sun, L. L.; Yun, Y. P.; Sheng, H. T.; Du, Y. X.; Ding, Y. M.; Wu, P.; Li, P.; Zhu, M. Z. Rational encapsulation of atomically precise nanoclusters into metal-organic frameworks by electrostatic attraction for CO2 conversion. J. Mater. Chem. A2018, 6, 15371–15376.

    Article  CAS  Google Scholar 

  19. Liang, J.; Liang, Z. B.; Zou, R. Q.; Zhao, Y. L. Heterogeneous catalysis in zeolites, mesoporous silica, and metal-organic frameworks. Adv. Mater.2017, 29, 1701139.

    Article  Google Scholar 

  20. Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature2016, 539, 76–80.

    Article  CAS  Google Scholar 

  21. Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev.2017, 46, 4774–4808.

    Article  CAS  Google Scholar 

  22. Deria, P.; Mondloch, J. E.; Karagiaridi, O.; Bury, W.; Hupp, J. T.; Farha, O. K. Beyond post-synthesis modification: Evolution of metal-organic frameworks via building block replacement. Chem. Soc. Rev.2014, 43, 5896–5912.

    Article  CAS  Google Scholar 

  23. Aijaz, A.; Akita, T.; Tsumori, N.; Xu, Q. Metal-organic framework-immobilized polyhedral metal nanocrystals: Reduction at solid-gas interface, metal segregation, core-shell structure, and high catalytic activity. J. Am. Chem. Soc.2013, 135, 16356–16359.

    Article  CAS  Google Scholar 

  24. Zhang, Z. C.; Chen, Y. F.; Xu, X. B.; Zhang, J. C.; Xiang, G. L.; He, W.; Wang, X. Well-defined metal-organic framework hollow nanocages. Angew. Chem., Int. Ed.2014, 53, 429–433.

    Article  CAS  Google Scholar 

  25. Kumar, S.; Jin, R. C. Water-soluble Au25(Capt)18 nanoclusters: Synthesis, thermal stability, and optical properties. Nanoscale2012, 4, 4222–4227.

    Article  CAS  Google Scholar 

  26. Waszkielewicz, M.; Olesiak-Banska, J.; Comby-Zerbino, C.; Bertorelle, F.; Dagany, X.; Bansal, A. K.; Sajjad, M. T.; Samuel, I. D. W.; Sanader, Z.; Rozycka, M. et al. pH-induced transformation of ligated Au25 to brighter Au23 nanoclusters. Nanoscale2018, 10, 11335–11341.

    Article  CAS  Google Scholar 

  27. DeStefano, M. R.; Islamoglu, T.; Garibay, S. J.; Hupp, J. T.; Farha, O. K. Room-temperature synthesis of UiO-66 and thermal modulation of densities of defect sites. Chem. Mater.2017, 29, 1357–1361.

    Article  CAS  Google Scholar 

  28. Carreno, M. C. Applications of sulfoxides to asymmetric synthesis of biologically active compounds. Chem. Rev.1995, 95, 1717–1760.

    Article  CAS  Google Scholar 

  29. Zen, J. M.; Liou, S. L.; Kumar, A. S.; Hsia, M. S. An efficient and selective photocatalytic system for the oxidation of sulfides to sulfoxides. Angew. Chem., Int. Ed.2003, 42, 577–579.

    Article  CAS  Google Scholar 

  30. Baciocchi, E.; del Giacco, T.; Elisei, F.; Gerini, M. F.; Guerra, M.; Lapi, A.; Liberali, P. Electron transfer and singlet oxygen mechanisms in the photooxygenation of dibutyl sulfide and thioanisole in MeCN sensitized by N-methylquinolinium tetrafluoborate and 9,10-dicyanoanthracene. The probable involvement of a thiadioxirane intermediate in electron transfer photooxygenations. J. Am. Chem. Soc.2003, 125, 16444–16454.

    Article  CAS  Google Scholar 

  31. Surendra, K.; Krishnaveni, N. S.; Kumar, V. P.; Sridhar, R.; Rao, K. R. Selective and efficient oxidation of sulfides to sulfoxides with N-bromosuccinimide in the presence of β-cyclodextrin in water. Tetrahed. Lett.2005, 46, 4581–4583.

    Article  CAS  Google Scholar 

  32. Brinksma, J.; La Crois, R.; Feringa, B. L.; Donnoli, M. I.; Rosini, C. New ligands for manganese catalysed selective oxidation of sulfides to sulfoxides with hydrogen peroxide. Tetrahed. Lett.2001, 42, 4049–4052.

    Article  CAS  Google Scholar 

  33. Kawasaki, H.; Kumar, S.; Li, G.; Zeng, C. J.; Kauffman, D. R.; Yoshimoto, J.; Iwasaki, Y.; Jin, R. C. Generation of singlet oxygen by photoexcited Au25(SR)18 clusters. Chem. Mater.2014, 26, 2777–2788.

    Article  CAS  Google Scholar 

  34. Li, Z. M.; Liu, C.; Abroshan, H.; Kauffman, D. R.; Li, G. Au38S2(SAdm)20 photocatalyst for one-step selective aerobic oxidations. ACS Catal.2017, 7, 3368–3374.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Key Basic Research Program of China (No. 2016YFA0200700, Z. Y. T.), the National Natural Science Foundation of China (Nos. 21890381 and 21721002, Z. Y. T.), Frontier Science Key Project of Chinese Academy of Sciences (No. QYZDJ-SSW-SLH038, Z. Y. T.), and K.C. Wong Education Foundation (Z. Y. T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Tang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Qiu, X., Zhao, S. et al. Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Res. 13, 1928–1932 (2020). https://doi.org/10.1007/s12274-020-2715-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2715-y

Keywords

Navigation