Skip to main content
Log in

A general strategy for bimetallic Pt-based nano-branched structures as highly active and stable oxygen reduction and methanol oxidation bifunctional catalysts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The morphology and size of Pt-based bimetallic alloys are known to determine their electrocatalytic performance in reactions relevant to fuel cells. Here, we report a general approach for preparing Pt-M (M = Fe, Co and Ni) bimetallic nano-branched structure (NBs) by a simple high temperature solution-phase synthesis. As-prepared Pt-M NBs show a polycrystalline structure and are rich in steps and kinks on the surface, which promote them favorable bifunctional catalytic properties in acidic electrolytes, specifically in terms of the oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). Specially, Pt-Co NBs/C catalyst shows 6.1 and 5.3 times higher in specific activity (SA) and mass activity (MA) for ORR than state-of-the-art commercial Pt/C catalysts, respectively. Moreover, it exhibits a loss of 4.0% in SA and 14.4% in MA after 10,000 cycles of accelerated durability tests (ADTs) compared with the initial activities. In addition, we also confirmed the superior MOR activity of Pt-Co NBs/C catalyst in acidic electrolytes. For Pt-M NBs with other alloying metals, the ORR and MOR activities are both higher than commercial catalysts and are in the sequence of Pt-Co/C > Pt-Fe/C > Pt-Ni/C > commercial Pt/C (or PtRu/C). The improved activities and durability can benefit from the morphological and compositional effects. This synthesis approach may be applied to develop bifunctional catalysts with enhanced ORR and MOR properties for future fuel cells designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

    CAS  Google Scholar 

  2. Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C. P.; Liao, J. H.; Lu, T. H.; Xing, W. Recent advances in catalysts for direct methanolfuel cells. Energy Environ. Sci. 2011, 4, 2736–2753.

    CAS  Google Scholar 

  3. Kakati, N.; Maiti, J.; Lee, S. H.; Jee, S. H.; Viswanathan, B.; Yoon, Y. S. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt-Ru? Chem. Rev. 2014, 114, 12397–12429.

    CAS  Google Scholar 

  4. Huang, H. J.; Wang, X. Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 6266–6291.

    CAS  Google Scholar 

  5. Tiwari, J. N.; Tiwari, R. N.; Singh, G.; Kim, K. S. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2013, 2, 553–578.

    CAS  Google Scholar 

  6. Sial, M. A. Z. G.; Ud Din, M. A.; Wang, X. Multimetallic nanosheets: Synthesis and applications in fuel cells. Chem. Soc. Rev. 2018, 47, 6175–6200.

    Google Scholar 

  7. Liu, M. L.; Zhao, Z. P.; Duan, X. F.; Huang, Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv. Mater. 2019, 31, 1802234.

    Google Scholar 

  8. Wang, P. T.; Shao, Q.; Huang, X. Q. Updating Pt-based electrocatalysts for practical fuel cells. Joule 2018, 2, 2514–2516.

    Google Scholar 

  9. Luo, M. C.; Sun, Y. J.; Zhang, X.; Qin, Y. N.; Li, M. Q.; Li, Y. J.; Li, C. J.; Yang, Y.; Wang, L.; Gao, P. et al. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater. 2018, 30, 1705515.

    Google Scholar 

  10. Jiang, L. Y.; Huang, X. Y.; Wang, A. J.; Li, X. S.; Yuan, J. H.; Feng, J. J. Facile solvothermal synthesis of Pt76Co24 nanomyriapods for efficient electrocatalysis. J. Mater. Chem. A 2017, 5, 10554–10560.

    CAS  Google Scholar 

  11. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

    CAS  Google Scholar 

  12. Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

    CAS  Google Scholar 

  13. Wu, Z. F.; Dang, D.; Tian, X. L. Designing robust support for Pt alloy nanoframes with durable oxygen reduction reaction activity. ACS Appl. Mater. Interfaces 2019, 11, 9117–9124.

    CAS  Google Scholar 

  14. Becknell, N.; Son, Y.; Kim, D.; Li, D. G.; Yu, Y.; Niu, Z. Q.; Lei, T.; Sneed, B. T.; More, K. L.; Markovic, N. M. et al. Control of architecture in rhombic dodecahedral Pt-Ni nanoframe electrocatalysts. J. Am. Chem. Soc. 2017, 139, 11678–11681.

    CAS  Google Scholar 

  15. Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.

    CAS  Google Scholar 

  16. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Google Scholar 

  17. Xia, Z. H.; Guo, S. J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278.

    CAS  Google Scholar 

  18. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

    CAS  Google Scholar 

  19. Bu, L. Z.; Ding, J. B.; Guo, S. J.; Zhang, X.; Su, D.; Zhu, X.; Yao, J. L.; Guo, J.; Lu, G.; Huang, X. Q. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv. Mater. 2015, 27, 7204–7212.

    CAS  Google Scholar 

  20. Chaudhari, N. K.; Joo, J.; Kim, B.; Ruqia, B.; Choi, S. I.; Lee, K. Recent advances in electrocatalysts toward the oxygen reduction reaction: The case of PtNi octahedra. Nanoscale 2018, 10, 20073–20088.

    CAS  Google Scholar 

  21. Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.

    CAS  Google Scholar 

  22. Luo, M. C.; Sun, Y. J.; Yingjun, Y. N.; Yang, Y.; Wu, D.; Guo, S. J. Boosting oxygen reduction catalysis by tuning the dimensionality of Pt-based nanostructures. Acta Phys.—Chim. Sin. 2018, 34, 361–376.

    CAS  Google Scholar 

  23. Zeng, L. M.; Cui, X. Z.; Shi, J. L. A facile strategy for ultrasmall Pt NPs being partially-embedded in N-doped carbon nanosheet structure for efficient electrocatalysis. Sci. China Mater. 2018, 61, 1557–1566.

    CAS  Google Scholar 

  24. Lim, J. H.; Shin, H.; Kim, M. Y.; Lee, H.; Lee, K. S.; Kwon, Y. K.; Song, D. H.; Oh, S. K.; Kim, H.; Cho, E. A. Ga-doped Pt-Ni octahedral nanoparticles as a highly active and durable electrocatalyst for oxygen reduction reaction. Nano Lett. 2018, 18, 2450–2458.

    CAS  Google Scholar 

  25. Raciti, D.; Kubal, J.; Ma, C.; Barclay, M.; Gonzalez, M.; Chi, M.; Greeley, J.; More, K. L.; Wang, C. Pt3Re alloy nanoparticles as electrocatalysts for the oxygen reduction reaction. Nano Energy 2016, 20, 202–211.

    CAS  Google Scholar 

  26. Wang, Z. X.; Yao, X. Z.; Kang, Y. Q.; Xia, D. S.; Gan, L. Rational development of structurally ordered platinum ternary intermetallic electrocatalysts for oxygen reduction reaction. Catalysts 2019, 9, 569.

    CAS  Google Scholar 

  27. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    CAS  Google Scholar 

  28. Zhang, J.; Fang, J. Y. A general strategy for preparation of Pt 3d-transition metal (Co, Fe, Ni) nanocubes. J. Am. Chem. Soc. 2009, 131, 18543–18547.

    CAS  Google Scholar 

  29. Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

    CAS  Google Scholar 

  30. Li, C. J.; Huang, B. L.; Luo, M. C.; Qin, Y. N.; Sun, Y. J.; Li, Y. J.; Yang, Y.; Wu, D.; Li, M. G.; Guo, S. J. An efficient ultrathin PtFeNi nanowire/ionic liquid conjugate electrocatalyst. Appl. Catal. B: Environ. 2019, 256, 117828.

    CAS  Google Scholar 

  31. Huang, H. W.; Li, K.; Chen, Z.; Luo, L. H.; Gu, Y. Q.; Zhang, D. Y.; Ma, C.; Si, R.; Yang, J. L.; Peng Z. M. et al. Achieving remarkable activity and durability toward oxygen reduction reaction based on ultrathin Rh-doped Pt nanowires. J. Am. Chem. Soc. 2017, 139, 8152–8159.

    CAS  Google Scholar 

  32. Bai, S. X.; Huang B. L.; Shao Q.; Huang X. Q. Universal strategy for ultrathin Pt-M (M = Fe, Co, Ni) nanowires for efficient catalytic hydrogen generation. ACS Appl. Mater. Interfaces 2018, 10, 22257–22263.

    CAS  Google Scholar 

  33. Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

    CAS  Google Scholar 

  34. Fu, S. F.; Zhu, C. Z.; Song, J. H.; Zhang, P. N.; Engelhard, M. H.; Xia, H. B.; Du, D.; Lin, Y. H. Low Pt-content ternary PdCuPt nanodendrites: An efficient electrocatalyst for oxygen reduction reaction. Nanoscale 2017, 9, 1279–1284.

    CAS  Google Scholar 

  35. Kwon, H.; Kabiraz, M. K.; Park, J.; Oh, A.; Baik, H.; Choi, S. I.; Lee, K. Dendrite-embedded platinum-nickel multiframes as highly active and durable electrocatalyst toward the oxygen reduction reaction. Nano Lett. 2018, 18, 2930–2936.

    CAS  Google Scholar 

  36. Lim, B.; Xia, Y. N. Metal nanocrystals with highly branched morphologies. Angew. Chem., Int. Ed. 2011, 50, 76–85.

    CAS  Google Scholar 

  37. Zhu, C. Z.; Du, D.; Eychmüller, A.; Lin, Y. H. Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry. Chem. Rev. 2015, 115, 8896–8943.

    CAS  Google Scholar 

  38. Cao, Y. Q.; Yang, Y.; Shan, Y. F.; Huang, Z. R. One-pot and facile fabrication of hierarchical branched Pt-Cu nanoparticles as excellent electrocatalysts for direct methanol fuel cells. ACS Appl. Mater. Interfaces 2016, 8, 5998–6003.

    CAS  Google Scholar 

  39. Luo, M.; Qin Y.; Li, M.; Sun, Y.; Li, C.; Li Y.; Yang Y.; Lv, F.; Wu, D.; Zhou, P. et al. Interface modulation of twinned PtFe nanoplates branched 3D architecture for oxygen reduction catalysis. Sci. Bull. 2020, 65, 97–104.

    Google Scholar 

  40. Xia, T. Y.; Liu, J. L.; Wang, S. G.; Chao, W.; Sun, Y.; Wang, R. M. Nanomagnetic CoPt truncated octahedrons: Facile synthesis, superior electrocatalytic activity and stability for methanol oxidation. Sci. China Mater. 2017, 60, 57–67.

    CAS  Google Scholar 

  41. Yang, P. P.; Yuan, X. L.; Hu, H. C.; Liu, Y. L.; Zheng, H. W.; Yang, D.; Chen, L.; Cao, M. H.; Xu, Y.; Min, Y. L. et al. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv. Funct. Mater. 2018, 28, 1704774.

    Google Scholar 

  42. Wang, L. J.; Tian, X. L.; Xu, Y. Y.; Zaman, S.; Qi, K.; Liu H.; Xia, B. Y. Engineering one-dimensional and hierarchical PtFe alloy assemblies towards durable methanol electrooxidation. J. Mater. Chem. A 2019, 7, 13090–13095.

    CAS  Google Scholar 

  43. Zhang, W. Y.; Yang, Y.; Huang, B. L.; Lv, F.; Wang, K.; Li, N.; Luo, M. C.; Chao, Y. G.; Li, Y. J.; Sun, Y. J. et al. Ultrathin PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials. Adv. Mater. 2019, 31, 1805833.

    Google Scholar 

  44. Han, Z.; Wang, A. J.; Zhang, L.; Wang, Z. G.; Fang, K. M.; Yin, Z. Z.; Feng, J. J. 3D highly branched PtCoRh nanoassemblies: Glycine-assisted solvothermal synthesis and superior catalytic activity for alcohol oxidation. J. Colloid Interf. Sci. 2019, 554, 512–519.

    CAS  Google Scholar 

  45. Xu, H.; Song, P. P.; Gao, F.; Shiraishi, Y.; Du, Y. K. Hierarchical branched platinum-copper tripods as highly active and stable catalysts. Nanoscale 2018, 10, 8246–8252.

    CAS  Google Scholar 

  46. Du, H. Y.; Wang, K.; Tsiakaras, P.; Shen, P. K. Excavated and dendritic Pt-Co nanocubes as efficient ethylene glycol and glycerol oxidation electrocatalysts. Appl. Catal. B: Environ 2019, 258, 117951.

    CAS  Google Scholar 

  47. Yu, Y. S.; Yang, W. W.; Sun, X. L.; Zhu, W. L.; Li, X. Z.; Sellmyer, D. J.; Sun S. S. Monodisperse MPt (M = Fe, Co, Ni, Cu, Zn) nanoparticles prepared from a facile oleylamine reduction of metal salts. Nano Lett. 2014, 14, 2778–2782.

    CAS  Google Scholar 

  48. Ye, E. Y.; Regulacio, M. D.; Zhang, S. Y.; Loh, X. J.; Han, M. Y. Anisotropically branched metal nanostructures. Chem. Soc. Rev. 2015, 44, 6001–6017.

    CAS  Google Scholar 

  49. Bai, J.; Xiao, X.; Xue, Y. Y.; Jiang, J. X.; Zeng, J. H.; Li, X. F.; Chen, Y. Bimetallic platinum-rhodium alloy nanodendrites as highly active electrocatalyst for the ethanol oxidation reaction. ACS Appl. Mater. Interfaces 2018, 10, 19755–19763.

    CAS  Google Scholar 

  50. Lu, Y.; Wang, W.; Chen, X. W.; Zhang, Y. H.; Han, Y. C.; Cheng, Y.; Chen, X. J.; Liu, K.; Wang, Y. Y.; Zhang, Q. B. et al. Composition optimized trimetallic PtNiRu dendritic nanostructures as versatile and active electrocatalysts for alcohol oxidation. Nano Res. 2019, 12, 651–657.

    CAS  Google Scholar 

  51. Qin, Y. N.; Luo, M. C.; Sun, Y. J.; Li, C. J.; Huang, B. L.; Yang, Y.; Li, Y. J.; Wang, L.; Guo, S. J. Intermetallic hcp-PtBi/fcc-Pt core/shell nanoplates enable efficient bifunctional oxygen reduction and methanol oxidation electrocatalysis. ACS Catal. 2018, 8, 5581–5590.

    CAS  Google Scholar 

  52. Koh, S.; Strasser, P. Electrocatalysis on bimetallic surfaces: Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J. Am. Chem. Soc. 2007, 129, 12624–12625.

    CAS  Google Scholar 

  53. Asset, T.; Chattot, R.; Fontana, M.; Mercier-Guyon, B.; Job, N.; Dubau, L.; Maillard, F. A review on recent developments and prospects for the oxygen reduction reaction on hollow Pt-alloy nanoparticles. ChemPhysChem 2018, 19, 1552–1567.

    CAS  Google Scholar 

  54. Jiang, L. Y.; Wang, A. J.; Li, X. S.; Yuan, J. H.; Feng, J. J. Facile solvothermal synthesis of Pt4Co multi-dendrites: An effective electrocatalyst for oxygen reduction and glycerol oxidation. ChemElectroChem 2017, 4, 2909–2914.

    CAS  Google Scholar 

  55. Fu, G. T.; Xia, B. Y.; Ma, R. G.; Chen, Y.; Tang, Y. W.; Lee, J. M. Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy 2015, 12, 824–832.

    CAS  Google Scholar 

  56. Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

    CAS  Google Scholar 

  57. Lee, Y. W.; Im, M.; Hong, J. W.; Han, S. W. Dendritic ternary alloy nanocrystals for enhanced electrocatalytic oxidation reactions. ACS Appl. Mater. Interfaces 2017, 9, 44018–44026.

    CAS  Google Scholar 

  58. Zhang, N.; Zhu, Y. M.; Shao, Q.; Zhu, X.; Huang, X. Q. Ternary PtNi/PtxPb/Pt core/multishell nanowires as efficient and stable electrocatalysts for fuel cell reactions. J. Mater. Chem. A 2017, 5, 18977–18983.

    CAS  Google Scholar 

  59. Jiang, X.; Liu, Y.; Wang, J. X.; Wang, Y. F.; Xiong, Y. X.; Liu, Q.; Li, N. X.; Zhou, J. C.; Fu, G. T.; Sun, D. M. et al. 1-naphthol induced Pt3Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells. Nano Res. 2019, 12, 323–329.

    CAS  Google Scholar 

  60. Bing, Y. H.; Liu, H. S.; Zhang, L.; Ghosh, D.; Zhang, J. J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 2010, 39, 2184–2202.

    CAS  Google Scholar 

  61. Yang, T.; Ma, Y. X.; Huang, Q. Q.; He, M. S.; Cao, G. J.; Sun, X.; Zhang, D. E.; Wang, M. Y.; Zhao, H.; Tong, Z. W. High durable ternary nanodendrites as effective catalysts for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2016, 8, 23646–23654.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51571072 and 51871078), Heilongjiang Science Foundation (No. E2018028), the China Scholarship Council, and the NSF MRSEC Program (DMR-14-19807).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongsheng Yu, Frances M. Ross or Weiwei Yang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Material

12274_2020_2666_MOESM1_ESM.pdf

A general strategy for bimetallic Pt-based nano-branched structures as highly active and stable oxygen reduction and methanol oxidation bifunctional catalysts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, W., Li, M., He, L. et al. A general strategy for bimetallic Pt-based nano-branched structures as highly active and stable oxygen reduction and methanol oxidation bifunctional catalysts. Nano Res. 13, 638–645 (2020). https://doi.org/10.1007/s12274-020-2666-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2666-3

Keywords

Navigation