Skip to main content
Log in

A retrospective and prospective of the use of bio- and nanomaterials for preconcentration, speciation, and determination of trace elements: a review spanning 25 years of research

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This review covers the investigations carried out with my colleagues and students during the last 25 years aimed at the development of analytical procedures for the preconcentration and/or speciation analysis of trace and ultra-trace elements using bio- and nanosorbents employing different methodologies, analytical techniques, and instrumental approaches. In the last years, an important part of this research was based on the use of nanomaterials for preconcentration and/or speciation studies. For their properties, they constitute a break point in the evolution of analytical chemistry. Special attention was paid to carbon nanotubes (CNTs) that resulted effective sorbents in flow systems using different immobilization strategies to improve their sorption capabilities. They resulted unique tools for on-line solid-phase (micro)extraction methods providing the appropriate selectivity (clean-up) and sensitivity (preconcentration) to reach the expected levels of many elements in matrices of biological or environmental interest. The performance of the different substrates, their strengths and weaknesses for the determination of trace elements, and their species in different matrices by a variety of analytical techniques are discussed in detail, along with perspectives and possible challenges in future development. This survey contains 96 references and covers primarily the literature published over the last 25 years by our research group. Relevant publications on the topics discussed were also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AAS:

Atomic absorption spectrometry

ala-CNTs:

l-Alanine carbon nanotubes

CNTs:

Carbon nanotubes

CPG:

Controlled pore glass

CV:

Cold vapor

CVG:

Chemical vapor generation

ETAAS:

Electrothermal atomic absorption spectrometry

FI:

Flow injection

FIA:

Flow injection analysis

GFAAS:

Graphite furnace atomic absorption spectrometry

HG:

Hydride generation

ICP-MS:

Inductively coupled plasma-mass spectrometry

ICP OES:

Inductively coupled plasma optical mission spectrometric

LLE:

Liquid-liquid extraction

LOD:

Limit of detection

MeHg:

Methylmercury

MW:

Multiwalled

NPC:

Nanoporous carbon

NPs:

Nanoparticles

ox-CNTs:

Oxidized carbon nanotubes

PF:

Preconcentration factor

pro-MWCNTs:

l-Proline multiwalled carbon nanotubes

SEM:

Scanning electron micrograph

SPE:

Solid-phase extraction

SW:

Single-walled

USN:

Ultrasonic nebulization

References

  1. laura SM, Zougagh M, Valcárcel M, Ríos Á. Analytical nanoscience and nanotechnology: where we are and where we are heading. Talanta. 2018;177:104–21. https://doi.org/10.1016/j.talanta.2017.09.012.

    Article  CAS  Google Scholar 

  2. Yang F, Kubota F, Baba Y, Kamiya N, Goto M. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. J Hazard Mater. 2013;254–255:79–88. https://doi.org/10.1016/j.jhazmat.2013.03.026.

    Article  CAS  PubMed  Google Scholar 

  3. Case ME, Fox RV, Baek DL, Mincher BJ, Wai CM. Extraction behavior of selected rare earth metals from acidic chloride media using tetrabutyl diglycolamide. Solvent Extr Ion Exch. 2017;35:496–506. https://doi.org/10.1080/07366299.2017.1373984.

    Article  CAS  Google Scholar 

  4. Barros AI, de Oliveira AP, Gomes Neto JA, Villa RD. Liquid–liquid extraction as a sample preparation procedure for the determination of Na, K, Ca, and Mg in biodiesel. Anal Methods. 2017;9:5395–9. https://doi.org/10.1039/C7AY01482A.

    Article  CAS  Google Scholar 

  5. Acebal CC, Simonet BM, Valcárcel M. Nanoparticles and continuous-flow systems combine synergistically for preconcentration. TrAC Trends Anal Chem. 2013;43:109–20. https://doi.org/10.1016/j.trac.2012.08.013.

    Article  CAS  Google Scholar 

  6. Milosavljević EB, Solujić L, Nelson JH, Hendrix JL. Simultaneous determination of chromium(VI) and chromium(III) by flame atomic absorption spectrometry with a chelating ion-exchange flow injection system. Mikrochim Acta. 1985;87:353–60. https://doi.org/10.1007/BF01196834.

    Article  Google Scholar 

  7. Cox AG, McLeod CW. Preconcentration and determination of trace chromium(III) by flow injection/inductively-coupled plasma/atomic emission spectrometry. Anal Chim Acta. 1986;179:487–90. https://doi.org/10.1016/S0003-2670(00)84497-9.

    Article  CAS  Google Scholar 

  8. Cox AG, Cook IG, McLeod CW. Rapid sequential determination of chromium(III) - chromium(VI) by flow injection analysis - inductively coupled plasma atomic-emission spectrometry. Analyst. 1985;110:331–3. https://doi.org/10.1039/AN9851000331.

    Article  CAS  Google Scholar 

  9. Sperling M, Yin X, Welz B. Differential determination of chromium(VI) and total chromium in natural waters using flow injection on-line separation and preconcentration electrothermal atomic absorption spectrometry. Analyst. 1992;117(3):629–35. https://doi.org/10.1039/an9921700629.

    Article  CAS  PubMed  Google Scholar 

  10. Cerdà V, Ferrer L, Avivar J, Cerdà A. Flow analysis. Elsevier S. Amsterdam: Elsevier Science; 2014.

  11. Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett. 2008;8:3498–502. https://doi.org/10.1021/nl802558y.

    Article  CAS  PubMed  Google Scholar 

  12. Jal PK, Patel S, Mishra BK. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta. 2004;62:1005–28. https://doi.org/10.1016/j.talanta.2003.10.028.

    Article  CAS  PubMed  Google Scholar 

  13. Spivakov BY, Malofeeva GI, Petrukhin OM. Solid-phase extraction on alkyl-bonded silica gels in inorganic analysis. Anal Sci. 2006;22:503–19. https://doi.org/10.2116/analsci.22.503.

    Article  CAS  PubMed  Google Scholar 

  14. Prasada Rao T, Praveen RS, Daniel S. Styrene–divinyl benzene copolymers: synthesis, characterization, and their role in inorganic trace analysis. Crit Rev Anal Chem. 2004;34:177–93. https://doi.org/10.1080/10408340490888689.

    Article  CAS  Google Scholar 

  15. Pyrzynska K. Application of carbon sorbents for the concentration and separation of metal ions. Anal Sci. 2007;23:631–7. https://doi.org/10.2116/analsci.23.631.

    Article  CAS  PubMed  Google Scholar 

  16. Valdés MG, Pérez-Cordoves AI, Díaz-García ME. Zeolites and zeolite-based materials in analytical chemistry. TrAC Trends Anal Chem. 2006;25:24–30. https://doi.org/10.1016/j.trac.2005.04.016.

    Article  CAS  Google Scholar 

  17. Lemos VA, Santos MS, Santos ES, Santos MJS, dos Santos WNL, Souza AS, et al. Application of polyurethane foam as a sorbent for trace metal pre-concentration — a review. Spectrochim Acta Part B At Spectrosc. 2007;62:4–12. https://doi.org/10.1016/j.sab.2006.12.006.

    Article  CAS  Google Scholar 

  18. Dadfarnia S, Green I, McLeod CW. On-line preconcentration and determination of lead by fibrous alumina and flow injection-atomic absorption spectrometry. Anal Proc Incl Anal Commun. 1994;31:61–3. https://doi.org/10.1039/AI9943100061.

    Article  CAS  Google Scholar 

  19. Drzewicz P, Trojanowicz M, Pyrzyn K. Preconcentration and separation of inorganic selenium species on activated alumina. Anal Chim Acta. 1998;363:141–6.

    Article  Google Scholar 

  20. Trojanowicz M, Pyrzyńska K. Flow-injection preconcentration of co(II) on 1-nitroso-2-naphthol-3,6-disulphonate-modified alumina for flame atomic absorption spectrometry. Anal Chim Acta. 1994;287:247–52. https://doi.org/10.1016/0003-2670(93)E0597-Z.

    Article  CAS  Google Scholar 

  21. Smichowski P, de la Calle Guntiñas MB, Cámara C. Preconcentration of trace antimony in tap and sea water on activated alumina. Determination by graphite furnace atomic absorption spectrometry. Fresenius J Anal Chem. 1994;348:380–4. https://doi.org/10.1007/BF00323139.

    Article  CAS  Google Scholar 

  22. Smichowski P, De La Calle MB, Madrid Y, Cobo MG, Cámara C. Speciation and preconcentration of Sb(III) and Sb(V) on alumina using phosphoric acid under pH-controlled conditions. Spectrochim Acta B At Spectrosc. 1994;49:1049–55. https://doi.org/10.1016/0584-8547(94)80090-1.

    Article  Google Scholar 

  23. de Oliveira LLG, Ferreira GO, Suquila FAC, de Almeida FG, Bertoldo LA, Segatelli MG, et al. Development of new analytical method for preconcentration/speciation of inorganic antimony in bottled mineral water using FIA-HG AAS system and SiO2/Al2O3/SnO2 ternary oxide. Food Chem. 2019;294:405–13. https://doi.org/10.1016/j.foodchem.2019.05.061.

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Liang P, Guo L. Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry. Talanta. 2005;68:25–30. https://doi.org/10.1016/j.talanta.2005.04.035.

    Article  CAS  PubMed  Google Scholar 

  25. Baranik A, Sitko R, Gagor A, Zawisza B. Alumina/nano-graphite composite as a new nanosorbent for the selective adsorption, preconcentration, and determination of chromium in water samples by EDXRF. Anal Bioanal Chem. 2018;410:7793–802. https://doi.org/10.1007/s00216-018-1397-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. He M, Huang L, Zhao B, Chen B, Hu B. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - a review. Anal Chim Acta. 2017;973:1–24. https://doi.org/10.1016/j.aca.2017.03.047.

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Luo X, Tang J, Hu X, Xu Q, Yang C. Extraction and preconcentration of trace levels of cobalt using functionalized magnetic nanoparticles in a sequential injection lab-on-valve system with detection by electrothermal atomic absorption spectrometry. Anal Chim Acta. 2012;713:92–6. https://doi.org/10.1016/j.aca.2011.11.022.

    Article  CAS  PubMed  Google Scholar 

  28. Koju NK, Song X, Wang Q, Hu Z, Colombo C. Cadmium removal from simulated groundwater using alumina nanoparticles: behaviors and mechanisms. Environ Pollut. 2018;240:255–66. https://doi.org/10.1016/j.envpol.2018.04.107.

    Article  CAS  PubMed  Google Scholar 

  29. Chatterjee A, Basu JK, Jana AK. Alumina-silica nano-sorbent from plant fly ash and scrap aluminium foil in removing nickel through adsorption. Powder Technol. 2019;354:792–803. https://doi.org/10.1016/j.powtec.2019.06.035.

    Article  CAS  Google Scholar 

  30. Chen X, Liu J, Ma Y, Wang P, Bai X, Pan J. Large-scale and low-cost fabrication of two functional silica sorbents by vapor condensation induced nanoemulsions and their excellent uptake performance. Chem Eng J. 2020;379:122364. https://doi.org/10.1016/j.cej.2019.122364.

    Article  CAS  Google Scholar 

  31. Płotka-Wasylka J, Szczepańska N, de la Guardia M, Namieśnik J. Modern trends in solid phase extraction: new sorbent media. TrAC Trends Anal Chem. 2016;77:23–43. https://doi.org/10.1016/j.trac.2015.10.010.

    Article  CAS  Google Scholar 

  32. Leyva AG, Marrero J, Smichowski P, Cicerone D. Sorption of antimony onto hydroxyapatite. Environ Sci Technol. 2001;35:3669–75. https://doi.org/10.1021/es0009929.

    Article  CAS  PubMed  Google Scholar 

  33. Smichowski P, Valiente L, Ledesma A. Simple method for the selective determination of As(III) and As(V) by ETAAS after separation with anion exchange minicolumn. At Spectrosc. 2002;23:92–7.

    CAS  Google Scholar 

  34. Yang T, Chen M-L, Wang J-H. Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. TrAC Trends Anal Chem. 2015;66:90–102. https://doi.org/10.1016/j.trac.2014.11.016.

    Article  CAS  Google Scholar 

  35. Maquieira A, Elmahadi HAM, Puchades R. Use of Saccharomyces cerevisiae in flow injection atomic absorption spectrometry for trace metal preconcentration. Anal Chem. 1994;66:1462–7. https://doi.org/10.1021/ac00081a017.

    Article  CAS  PubMed  Google Scholar 

  36. Madrid Y, Camara C. Biotrapping as an alternative to metal preconcentration and speciation. In: Mester Z, Sturgeon RE, editors. Sample Prep. Trace Elem. Anal . 1st ed. Amsterdam: Elsevier Science; 2003. p. 533–58.

    Google Scholar 

  37. Mahan CA, Majidi V, Holcombe JA. Evaluation of the metal uptake of several algae strains in a multicomponent matrix utilizing inductively coupled plasma emission spectrometry. Anal Chem. 1989;61:624–7. https://doi.org/10.1021/ac00181a026.

    Article  CAS  PubMed  Google Scholar 

  38. Madrid Y, Cabrera C, Perez-Corona T, Camara C. Speciation of methylmercury and Hg(II) using baker’s yeast biomass (Saccharomyces cerevisiae). Determination by continuous flow mercury cold vapor generation atomic absorption spectrometry. Anal Chem. 1995;67:750–4. https://doi.org/10.1021/ac00100a010.

    Article  CAS  PubMed  Google Scholar 

  39. Blackwell KJ, Singleton I, Tobin JM. Metal cation uptake by yeast: a review. Appl Microbiol Biotechnol. 1995;43:579–84. https://doi.org/10.1007/BF00164757.

    Article  CAS  PubMed  Google Scholar 

  40. Bag H, Lale M, Türker AR. Determination of iron and nickel by flame atomic absorption spectrophotometry after preconcentration on Saccharomyces cerevisiae immobilized sepiolite. Talanta. 1998;47:689–96. https://doi.org/10.1016/S0039-9140(98)00104-0.

    Article  CAS  PubMed  Google Scholar 

  41. Smichowski P, Marrero J, Ledesma A, Polla G, Batistoni DA. Speciation of As(III) and As(V) in aqueous solutions using baker’s yeast and hydride generation inductively coupled plasma atomic emission spectrometric determination. J Anal At Spectrom. 2000;15:1493–7. https://doi.org/10.1039/b004697n.

    Article  CAS  Google Scholar 

  42. Parodi B, Polla G, Valiente L, Smichowski P. Application of biological substrates to the speciation analysis of Cr(III) and Cr(VI). At Spectrosc. 2005;26:102–9.

    CAS  Google Scholar 

  43. Menegário AA, Smichowski P, Polla G. On-line preconcentration and speciation analysis of Cr(III) and Cr(VI) using baker’s yeast cells immobilised on controlled pore glass. Anal Chim Acta. 2005;546:244–50. https://doi.org/10.1016/j.aca.2005.05.030.

    Article  CAS  Google Scholar 

  44. Elmahadi HAM, Greenway GM. Immobilized alga as a reagent for preconcentration in trace element atomic absorption spectrometry. J Anal At Spectrom. 1991;6:643. https://doi.org/10.1039/ja9910600643.

    Article  CAS  Google Scholar 

  45. Stair JL, Holcombe JA. Metal remediation and preconcentration using immobilized short-chain peptides composed of aspartic acid and cysteine. Microchem J. 2005;81:69–80. https://doi.org/10.1016/j.microc.2005.01.003.

    Article  CAS  Google Scholar 

  46. Moyano S, Polla G, Smichowski P, Gásquez JA, Martinez LD. On-line preconcentration and determination of vanadium in tap and river water samples by flow injection-inductively coupled plasma-optical emission spectrometry (FI-ICP-OES). J Anal At Spectrom. 2006;21:422. https://doi.org/10.1039/b516734e.

    Article  CAS  Google Scholar 

  47. Gil RA, Pasini-Cabello S, Takara A, Smichowski P, Olsina RA, Martínez LD. A novel on-line preconcentration method for trace molybdenum determination by USN–ICP OES with biosorption on immobilized yeasts. Microchem J. 2007;86:156–60. https://doi.org/10.1016/j.microc.2007.02.001.

    Article  CAS  Google Scholar 

  48. Jarque S, Bittner M, Blaha L, Hilscherova K. Yeast biosensors for detection of environmental pollutants: current state and limitations. Trends Biotechnol. 2016;34:408–19. https://doi.org/10.1016/j.tibtech.2016.01.007.

    Article  CAS  PubMed  Google Scholar 

  49. Jurbergs HA, Holcombe JA. Characterization of immobilized poly(L-cysteine) for cadmium chelation and preconcentration. Anal Chem. 1997;69:1893–8. https://doi.org/10.1021/ac961139o.

    Article  CAS  Google Scholar 

  50. Malachowski L, Holcombe JA. Immobilized poly-l-histidine for chelation of metal cations and metal oxyanions. Anal Chim Acta. 2003;495:151–63. https://doi.org/10.1016/j.aca.2003.08.039.

    Article  CAS  Google Scholar 

  51. Malachowski L, Stair JL, Holcombe JA. Immobilized peptides/amino acids on solid supports for metal remediation. Pure Appl Chem. 2004;76:777–87. https://doi.org/10.1351/pac200476040777.

    Article  CAS  Google Scholar 

  52. Kagi JHR, Kojima Y. Metallothionein II, vol. 52. Birkhäuser Basel: Basel; 1987. https://doi.org/10.1007/978-3-0348-6784-9.

    Book  Google Scholar 

  53. Khan BT, Mohan KM, Goud GN. Mixed ligand complexes of palladium(II) and platinum(II) with methionine and 2,4-disubstituted pyrimidines. Transit Met Chem. 1990;15:407–10. https://doi.org/10.1007/BF01177472.

    Article  CAS  Google Scholar 

  54. Várnagy K, Bóka B, Sóvágó I, Sanna D, Marras P, Micera G. Potentiometric and spectroscopic studies on the copper(II) and nickel(II) complexes of tripeptides of methionine. Inorg Chim Acta. 1998;275–276:440–6. https://doi.org/10.1016/S0020-1693(98)00079-6.

    Article  Google Scholar 

  55. Howard M, Jurbergs HA, Holcombe JA. Comparison of silica-immobilized poly(L-cysteine) and 8-hydroxyquinoline for trace metal extraction and recovery. J Anal At Spectrom. 1999;14:1209–14. https://doi.org/10.1039/a903337h.

    Article  CAS  Google Scholar 

  56. Gutierrez E, Miller TC, Gonzalez-Redondo JR, Holcombe JA. Characterization of immobilized poly-L-aspartate as a metal chelator. Environ Sci Technol. 1999;33:1664–70. https://doi.org/10.1021/es981166r.

    Article  CAS  Google Scholar 

  57. Miller TC, Holcombe JA. Comparison and evaluation of the synthetic biopolymer poly-l-aspartic acid and the synthetic “plastic” polymer poly-acrylic acid for use in metal ion-exchange systems. J Hazard Mater. 2001;83:219–36. https://doi.org/10.1016/S0304-3894(01)00184-4.

    Article  CAS  PubMed  Google Scholar 

  58. Howard M, Holcombe JA. Effective trace metal separation and preconcentration using immobilized biopolymers. In: ACS, editor. 218th ACS Natl. Meet. 22–26 August, New Orleans, LA: ACS; 1999.

  59. Pacheco PH, Gil RA, Smichowski P, Polla G, Martinez LD. On-line preconcentration and speciation analysis of Se (IV) and Se(VI) using L-methionine immobilised on controlled pore glass. J Anal At Spectrom. 2007;22:305–9. https://doi.org/10.1039/B611934D.

    Article  CAS  Google Scholar 

  60. Krachler M, Emons H. Urinary antimony speciation by HPLC-ICP-MS. J Anal At Spectrom. 2001;16:20–5. https://doi.org/10.1039/B007903K.

    Article  CAS  Google Scholar 

  61. Miekeley N, Mortari S, Schubach A. Monitoring of total antimony and its species by ICP-MS and on-line ion chromatography in biological samples from patients treated for leishmaniasis. Anal Bioanal Chem. 2002;372:495–502. https://doi.org/10.1007/s00216-001-1213-7.

    Article  CAS  PubMed  Google Scholar 

  62. Pacheco PH, Gil RA, Martinez LD, Polla G, Smichowski P. A fully automated system for inorganic antimony preconcentration and speciation in urine. Anal Chim Acta. 2007;603:1–7. https://doi.org/10.1016/j.aca.2007.09.034.

    Article  CAS  PubMed  Google Scholar 

  63. Polizzi S, Pira E, Ferrara M, Bugiani M, Papaleo A, Albera R, et al. Neurotoxic effects of aluminium among foundry workers and Alzheimer’s disease. Neurotoxicology. 2002;23:761–74. https://doi.org/10.1016/S0161-813X(02)00097-9.

    Article  CAS  PubMed  Google Scholar 

  64. Pacheco PH, Gil RA, Smichowski P, Polla G, Martinez LD. Trace aluminium determination in biological samples after microwave digestion followed by solid phase extraction with l-methionine on controlled pore glass. Microchem J. 2008;89:1–6. https://doi.org/10.1016/j.microc.2007.10.004.

    Article  CAS  Google Scholar 

  65. Pacheco PH, Gil RA, Smichowski P, Polla G, Martinez LD. Selective determination of inorganic selenium species in parenteral solutions using l-methionine as retaining agent in ETAAS. J Anal At Spectrom. 2008;23:397–401. https://doi.org/10.1039/B711685C.

    Article  CAS  Google Scholar 

  66. Pacheco PH, Olsina R, Polla G, Martinez LD, Smichowski P. Adsorption behaviour of cadmium on L-methionine immobilized on controlled pore glass. Microchem J. 2009;91:159–64. https://doi.org/10.1016/j.microc.2008.10.002.

    Article  CAS  Google Scholar 

  67. Menegário AA, Smichowski P, Tonello PS, Polla G, Oliveira EP, Santelli RE. On-line redox speciation analysis of antimony using l-proline immobilized on controlled pore glass and hydride generation inductively coupled plasma optical emission spectrometry for detection. Anal Chim Acta. 2008;625:131–6. https://doi.org/10.1016/j.aca.2008.07.029.

    Article  CAS  PubMed  Google Scholar 

  68. Pacheco PH, Gil RA, Martínez LD, Smichowski P. Preconcentration, speciation, and determination of key elements in biological samples in Latin America. Anal Bioanal Chem. 2013;405:7563–71. https://doi.org/10.1007/s00216-013-6958-2.

    Article  CAS  PubMed  Google Scholar 

  69. Escudero LB, Maniero MÁ, Agostini E, Smichowski PN. Biological substrates: green alternatives in trace elemental preconcentration and speciation analysis. TrAC Trends Anal Chem. 2016;80:531–46. https://doi.org/10.1016/j.trac.2016.04.002.

    Article  CAS  Google Scholar 

  70. Escudero LB, Smichowski PN, Dotto GL. Macroalgae of Iridaea cordata as an efficient biosorbent to remove hazardous cationic dyes from aqueous solutions. Water Sci Technol. 2017;76:3379–91. https://doi.org/10.2166/wst.2017.505.

    Article  CAS  PubMed  Google Scholar 

  71. Kyzas G, Mitrpoulos AC. Composite nanoadsorbents. 1st ed. Amsterdam: Elsevier; 2018.

    Google Scholar 

  72. Khajeh M, Laurent S, Dastafkan K. Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem Rev. 2013;113:7728–68. https://doi.org/10.1021/cr400086v.

    Article  CAS  PubMed  Google Scholar 

  73. Jawaid M, Ahmad A, Lokhat D, editors. Graphene-based nanotechnologies for energy and environmental applications. 1st ed. Elsevier; 2019.

  74. Pyrzynska K. Carbon nanostructures for separation, preconcentration and speciation of metal ions. TrAC Trends Anal Chem. 2010;29:718–27. https://doi.org/10.1016/j.trac.2010.03.013.

    Article  CAS  Google Scholar 

  75. Gallego M, Petit de Pena Y, Valcarcel M. Fullerenes as sorbent materials for metal preconcentration. Anal Chem. 1994;66:4074–8. https://doi.org/10.1021/ac00094a033.

    Article  CAS  Google Scholar 

  76. Li Y-H, Ding J, Luan Z, Di Z, Zhu Y, Xu C, et al. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon N Y. 2003;41:2787–92. https://doi.org/10.1016/S0008-6223(03)00392-0.

    Article  CAS  Google Scholar 

  77. Parodi B, Londonio A, Polla G, Savio M, Smichowski P. On-line flow injection solid phase extraction using oxidised carbon nanotubes as the substrate for cold vapour-atomic absorption determination of Hg(II) in different kinds of water. J Anal At Spectrom. 2014;29:880–5. https://doi.org/10.1039/C3JA50396H.

    Article  CAS  Google Scholar 

  78. Parodi B, Londonio A, Polla G, Smichowski P. On-line solid phase extraction of bismuth by FI–HG–AAS using l-proline immobilised on carbon nanotubes combined with factorial design. Microchem J. 2015;122:70–5. https://doi.org/10.1016/j.microc.2015.04.014.

    Article  CAS  Google Scholar 

  79. Londonio A, Parodi B, Gil RA, Alshehri SM, Yamauchi Y, Smichowski P. A comparative study of two nanosubstrates for the on-line solid phase extraction of antimony by FI-HG-AAS. Microchem J. 2016;128:235–41. https://doi.org/10.1016/j.microc.2016.05.003.

    Article  CAS  Google Scholar 

  80. Londonio A, Hasuoka PE, Pacheco P, Gil RA, Smichowski P. Online solid phase extraction-HPLC-ICP-MS system for mercury and methylmercury preconcentration using functionalised carbon nanotubes for their determination in dietary supplements. J Anal At Spectrom. 2018;33:1737–44. https://doi.org/10.1039/C8JA00188J.

    Article  CAS  Google Scholar 

  81. Cerutti S, Moyano S, Marrero J, Smichowski P, Martinez LD. On-line preconcentration of nickel on activated carbon prior to its determination by vapor generation associated to inductively coupled plasma optical emission spectrometry. J Anal At Spectrom. 2005;20:559. https://doi.org/10.1039/b500467p.

    Article  CAS  Google Scholar 

  82. Marrero J, Smichowski P. Evaluation of vapor generation for the determination of nickel by inductively coupled plasma-atomic emission spectrometry. Anal Bioanal Chem. 2002;374:196–202. https://doi.org/10.1007/s00216-002-1372-1.

    Article  CAS  PubMed  Google Scholar 

  83. Gil RA, Goyanes SN, Polla G, Smichowski P, Olsina RA, Martinez LD. Application of multi-walled carbon nanotubes as substrate for the on-line preconcentration, speciation and determination of vanadium by ETAAS. J Anal At Spectrom. 2007;22:1290. https://doi.org/10.1039/b700846e.

    Article  CAS  Google Scholar 

  84. Gil RA, Pacheco PH, Smichowski P, Olsina RA, Martinez LD. Speciation analysis of thallium using electrothermal AAS following on-line pre-concentration in a microcolumn filled with multiwalled carbon nanotubes. Microchim Acta. 2009;167:187–93. https://doi.org/10.1007/s00604-009-0241-4.

    Article  CAS  Google Scholar 

  85. Sitko R, Zawisza B, Malicka E. Modification of carbon nanotubes for preconcentration, separation and determination of trace-metal ions. TrAC Trends Anal Chem. 2012;37:22–31. https://doi.org/10.1016/j.trac.2012.03.016.

    Article  CAS  Google Scholar 

  86. Pacheco PH, Gil RA, Smichowski P, Polla G, Martinez LD. l-Tyrosine immobilized on multiwalled carbon nanotubes: a new substrate for thallium separation and speciation using stabilized temperature platform furnace-electrothermal atomic absorption spectrometry. Anal Chim Acta. 2009;656:36–41. https://doi.org/10.1016/j.aca.2009.10.010.

    Article  CAS  PubMed  Google Scholar 

  87. Pacheco PH, Smichowski P, Polla G, Martinez LD. Solid phase extraction of Co ions using l-tyrosine immobilized on multiwall carbon nanotubes. Talanta. 2009;79:249–53. https://doi.org/10.1016/j.talanta.2009.03.050.

    Article  CAS  PubMed  Google Scholar 

  88. Bazán C, Gil R, Smichowski P, Pacheco P. Multivariate optimization of a solid phase extraction system employing l-tyrosine immobilized on carbon nanotubes applied to molybdenum analysis by inductively coupled plasma optical emission spectrometry with ultrasound nebulization. Microchem J. 2014;117:40–5. https://doi.org/10.1016/j.microc.2014.06.003.

    Article  CAS  Google Scholar 

  89. Parodi B, Savio M, Martinez LD, Gil RA, Smichowski P. Study of carbon nanotubes and functionalized-carbon nanotubes as substrates for flow injection solid phase extraction associated to inductively coupled plasma with ultrasonic nebulization. Microchem J. 2011;98:225–30. https://doi.org/10.1016/j.microc.2011.02.002.

    Article  CAS  Google Scholar 

  90. Savio M, Parodi B, Martinez LD, Smichowski P, Gil RA. On-line solid phase extraction of Ni and Pb using carbon nanotubes and modified carbon nanotubes coupled to ETAAS. Talanta. 2011;85:245–51. https://doi.org/10.1016/j.talanta.2011.03.054.

    Article  CAS  PubMed  Google Scholar 

  91. Suárez B, Simonet BM, Cárdenas S, Valcárcel M. Determination of non-steroidal anti-inflammatory drugs in urine by combining an immobilized carboxylated carbon nanotubes minicolumn for solid-phase extraction with capillary electrophoresis-mass spectrometry. J Chromatogr A. 2007;1159:203–7. https://doi.org/10.1016/j.chroma.2007.01.092.

    Article  CAS  PubMed  Google Scholar 

  92. Torad NL, Hu M, Kamachi Y, Takai K, Imura M, Naito M, et al. Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chem Commun. 2013;49:2521. https://doi.org/10.1039/c3cc38955c.

    Article  CAS  Google Scholar 

  93. Salunkhe RR, Zakaria MB, Kamachi Y, Alshehri SM, Ahamad T, Torad NL, et al. Fabrication of asymmetric supercapacitors based on coordination polymer derived nanoporous materials. Electrochim Acta. 2015;183:94–9. https://doi.org/10.1016/j.electacta.2015.05.034.

    Article  CAS  Google Scholar 

  94. Zhao X, Liu R. Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ Int. 2012;40:244–55. https://doi.org/10.1016/j.envint.2011.12.003.

    Article  CAS  PubMed  Google Scholar 

  95. Cao Y, Luo Y. Pharmacological and toxicological aspects of carbon nanotubes (CNTs) to vascular system: a review. Toxicol Appl Pharmacol. 2019;385:114801. https://doi.org/10.1016/j.taap.2019.114801.

    Article  CAS  PubMed  Google Scholar 

  96. Mohanta D, Patnaik S, Sood S, Das N. Carbon nanotubes: evaluation of toxicity at biointerfaces. J Pharm Anal. 2019;9:293–300. https://doi.org/10.1016/j.jpha.2019.04.003.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

PS wants to express her gratitude to all the colleagues and students that have been part of these 25 years of research and the co-author of this review, my Ph.D. student Agustín Londonio who has contributed with dedication to the realization of this paper. Special thanks to my friends, colleagues, and students from the Universidad Nacional de San Luis (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Smichowski.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Female Role Models in Analytical Chemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smichowski, P., Londonio, A. A retrospective and prospective of the use of bio- and nanomaterials for preconcentration, speciation, and determination of trace elements: a review spanning 25 years of research. Anal Bioanal Chem 412, 6023–6036 (2020). https://doi.org/10.1007/s00216-020-02536-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02536-5

Keywords

Navigation