Skip to main content
Log in

High-sensitivity detection of therapeutic drugs in complex biofluids using a packed ballpoint-electrospray ionization technique

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simple and sensitive C18 packed ballpoint-electrospray ionization (PBP-ESI) technique was developed for biofluid analysis. In this technique, the configuration of a commercial ballpoint consisting of a hollow chamber, an intermediate socket, and a metal ball was fully exploited. The rear-end hollow chamber was used for loading C18 adsorbent and sample, and the front metal ball served as a spray emitter for online ionization. The good electrical conductivity of the metal body allowed high voltage to be conveniently applied to the ballpoint without inserting the electrode into the solution for electrical connection. Urine sample was directly analyzed with the C18 packed ballpoint; plasma and whole blood samples were premixed with C18 adsorbent before being packed into the ballpoint for detection. As a result of the sample cleanup by C18 adsorbent, the salt matrix in the urine sample as well as the phospholipid and protein matrices in plasma and whole blood samples was significantly reduced. The lower limits of quantitation (LLOQs) for urine, plasma, and whole blood samples reached the subnanogram-per-milliliter level.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kang JS, Lee MH. Overview of therapeutic drug monitoring. Korean J Intern Med. 2009;24(1):1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lee MS, Kerns EH. LC/MS applications in drug development. Mass Spectrom Rev. 1999;18(3–4):187–279.

    Article  PubMed  CAS  Google Scholar 

  3. Hsieh Y. HPLC-MS/MS in drug metabolism and pharmacokinetic screening. Expert Opin Drug Metab Toxicol. 2008;4(1):93–101.

    Article  PubMed  CAS  Google Scholar 

  4. Chang MS, Ji Q, Zhang J, El-Shourbagy TA. Historical review of sample preparation for chromatographic bioanalysis: pros and cons. Drug Dev Res. 2007;68(3):107–33.

    Article  CAS  Google Scholar 

  5. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res. 2010;51(11):3299–305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Thibault L, Beausejour A, de Grandmont MJ, Lemieux R, Leblanc JF. Characterization of blood components prepared from whole-blood donations after a 24-hour hold with the platelet-rich plasma method. Transfusion. 2006;46(8):1292–9.

    Article  PubMed  Google Scholar 

  7. Wildman BJ, Jackson PE, Jones WR, Alden PG. Analysis of anion constituents of urine by inorganic capillary electrophoresis. J Chromatogr. 1991;546(1–2):459–66.

    Article  PubMed  CAS  Google Scholar 

  8. Pantuckova P, Krivankova L. Fast and simple method for determination of iodide in human urine, serum, sea water, and cooking salt by capillary zone electrophoresis. Electrophoresis. 2004;25(7–8):1102–10.

    Article  PubMed  CAS  Google Scholar 

  9. Monge ME, Harris GA, Dwivedi P, Fernandez FM. Mass spectrometry: recent advances in direct open air surface sampling/ionization. Chem Rev. 2013;113(4):2269–308.

    Article  PubMed  CAS  Google Scholar 

  10. Venter AR, Douglass KA, Shelley JT, Hasman G, Honarvar E. Mechanisms of real-time, proximal sample processing during ambient ionization mass spectrometry. Anal Chem. 2014;86(1):233–49.

    Article  PubMed  CAS  Google Scholar 

  11. Wiseman JM, Evans CA, Bowen CL, Kennedy JH. Direct analysis of dried blood spots utilizing desorption electrospray ionization (DESI) mass spectrometry. Analyst. 2010;135(4):720–5.

    Article  PubMed  CAS  Google Scholar 

  12. Wang H, Liu J, Cooks RG, Ouyang Z. Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew Chem Int Ed. 2010;49(5):877–80.

    Article  CAS  Google Scholar 

  13. Hecht M, Evard H, Takkis K, Veigure R, Aro R, Lohmus R, et al. Sponge spray-reaching new dimensions of direct sampling and analysis by MS. Anal Chem. 2017;89(21):11592–7.

    Article  PubMed  CAS  Google Scholar 

  14. Vega C, Spence C, Zhang CS, Bills B, Manicke N. Ionization suppression and recovery in direct biofluid analysis using paper spray mass spectrometry. J Am Soc Mass Spectrom. 2016;27(4):726–34.

    Article  PubMed  CAS  Google Scholar 

  15. Lin ZQ, Zhang SC, Zhao MX, Yang CD, Chen DP, Zhang XR. Rapid screening of clenbuterol in urine samples by desorption electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2008;22(12):1882–8.

    Article  PubMed  CAS  Google Scholar 

  16. Huang YQ, You JQ, Yuan BF, Feng YQ. Sample preparation and direct electrospray ionization on a tip column for rapid mass spectrometry analysis of complex samples. Analyst. 2012;137(19):4593–7.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang CS, Manicke NE. Development of a paper spray mass spectrometry cartridge with integrated solid phase extraction for bioanalysis. Anal Chem. 2015;87(12):6212–9.

    Article  PubMed  CAS  Google Scholar 

  18. Tascon M, Gomez-Rios GA, Reyes-Garces N, Poole J, Boyaci E, Pawliszyn J. High-throughput screening and quantitation of target compounds in biofluids by coated blade spray-mass spectrometry. Anal Chem. 2017;89(16):8421–8.

    Article  PubMed  CAS  Google Scholar 

  19. Piri-Moghadam H, Ahmadi F, Gomez-Rios GA, Boyaci E, Reyes-Garces N, Aghakhani A, et al. Fast quantitation of target analytes in small volumes of complex samples by matrix-compatible solid-phase microextraction devices. Angew Chem Int Ed. 2016;55(26):7510–4.

    Article  CAS  Google Scholar 

  20. Li TY, Fan LS, Wang YF, Huang XB, Xu JG, Lu JX, et al. Molecularly imprinted membrane electrospray ionization for direct sample analyses. Anal Chem. 2017;89(3):1453–8.

    Article  PubMed  CAS  Google Scholar 

  21. Gomez-Rios GA, Reyes-Garces N, Bojko B, Pawliszyn J. Biocompatible solid-phase microextraction nanoelectrospray ionization: an unexploited tool in bioanalysis. Anal Chem. 2016;88(2):1259–65.

    Article  PubMed  CAS  Google Scholar 

  22. Ren Y, McLuckey MN, Liu JJ, Ouyang Z. Direct mass spectrometry analysis of biofluid samples using slugflow microextraction nano-electrospray ionization. Angew Chem Int Ed. 2014;53(51):14124–7.

    Article  CAS  Google Scholar 

  23. Ren Y, Chiang S, Zhang WP, Wang X, Lin ZQ, Ouyang Z. Paper-capillary spray for direct mass spectrometry analysis of biofluid samples. Anal Bioanal Chem. 2016;408(5):1385–90.

    Article  PubMed  CAS  Google Scholar 

  24. Ji BC, Xia B, Gao YJ, Ma FW, Ding LS, Zhou Y. Generating electrospray ionization on ballpoint tips. Anal Chem. 2016;88(10):5072–9.

    Article  PubMed  CAS  Google Scholar 

  25. Pacifici GM, Viani A. Methods of determining plasma and tissue binding of drugs-pharmacokinetic consequences. Clin Pharmacokinet. 1992;23(6):449–68.

    Article  PubMed  CAS  Google Scholar 

  26. Choong E, Rudaz S, Kottelat A, Guillarme D, Veuthey JL, Eap CB. Therapeutic drug monitoring of seven psychotropic drugs and four metabolites in human plasma by HPLC-MS. J Pharm Biomed Anal. 2009;50(5):1000–8.

    Article  PubMed  CAS  Google Scholar 

  27. Regenthal R, Krueger M, Koeppel C, Preiss R. Drug levels: therapeutic and toxic serum/plasma concentrations of common drugs. J Clin Monit Comput. 1999;15(7–8):529–44.

    Article  PubMed  CAS  Google Scholar 

  28. European Medicines Agency (EMA). Annual report 2011. London: EMA; 2011.

    Google Scholar 

  29. Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem. 2003;75(13):3019–30.

    Article  PubMed  CAS  Google Scholar 

  30. Remane D, Meyer MR, Wissenbach DK, Maurer HH. Ion suppression and enhancement effects of co-eluting analytes in multi-analyte approaches: systematic investigation using ultra-high-performance liquid chromatography/mass spectrometry with atmosphericpressure chemical ionization or electrospray ionization. Rapid Commun Mass Spectrom. 2010;24(21):3103–8.

    Article  PubMed  CAS  Google Scholar 

  31. Rafferty JL, Siepmann JI, Schure MR. Mobile phase effects in reversed-phase liquid chromatography: a comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation. J Chromatogr A. 2011;1218(16):2203–13.

    Article  PubMed  CAS  Google Scholar 

  32. Su Y, Wang H, Liu JJ, Wei P, Cooks RG, Ouyang Z. Quantitative paper spray mass spectrometry analysis of drugs of abuse. Analyst. 2013;138(16):4443–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhang ZP, Xu W, Manicke NE, Cooks RG, Ouyang Z. Silica coated paper substrate for paper-spray analysis of therapeutic drugs in dried blood spots. Anal Chem. 2012;84(2):931–8.

    Article  PubMed  CAS  Google Scholar 

  34. Damon DE, Yin MZ, Allen DM, Maher YS, Tanny CJ, Oyola-Reynoso S, et al. Dried blood spheroids for dry-state room temperature stabilization of microliter blood samples. Anal Chem. 2018;90(15):9353–8.

    Article  PubMed  CAS  Google Scholar 

  35. Gonzalvez A, Preinerstorfer B, Lindner W. Selective enrichment of phosphatidylcholines from food and biological matrices using metal oxides as solid-phase extraction materials prior to analysis by HPLC-ESI-MS/MS. Anal Bioanal Chem. 2010;396(8):2965–75.

    Article  PubMed  CAS  Google Scholar 

  36. Chicz RM, Regnier FE. High-performance liquid-chromatography-effective protein-purification by various chromatographic modes. Methods Enzymol. 1990;182:392–421.

    Article  PubMed  CAS  Google Scholar 

  37. Vismeh R, Waldon DJ, Teffera Y, Zhao Z. Localization and quantification of drugs in animal tissues by use of desorption electrospray ionization mass spectrometry imaging. Anal Chem. 2012;84(12):5439–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Dr. Yan Zhou received funding from the National Natural Science Foundation of China (21572221 and 21772193) and National Key R&D Program of China grant no. 2018YFC1602400. Dr. Bing Xia received funding from the National Natural Science Foundation of China (21672206).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongping Qin or Yan Zhou.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Research involving human participants

Human plasma and whole blood were donated by West China Hospital, Sichuan University (Chengdu, China). Informed consent and sampling permission were obtained prior to specimen collection, and the experiments on human biologic samples were approved by the Ethics Committee of Chengdu Institute of Biology, Chinese Academy of Sciences.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 3216 kb)

ESM 2

(AVI 28490 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Qin, Y., Xia, B. et al. High-sensitivity detection of therapeutic drugs in complex biofluids using a packed ballpoint-electrospray ionization technique. Anal Bioanal Chem 412, 2711–2720 (2020). https://doi.org/10.1007/s00216-020-02512-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02512-z

Keywords

Navigation