Skip to main content
Log in

Numerical Investigation of Viscous Fingering Phenomenon for Raw Field Data

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper numerically investigates the viscous fingering phenomenon. Two-dimensional horizontal model reservoir was considered for homogeneous porous media with immiscible fluids. A series of numerical simulations was performed with two distinct solvers for various combinations of relative permeability, capillary pressure and material properties in order to analyse morphological properties of viscous fingers in a wide-range spectrum of real field conditions. A phenomenological classification of viscous fingers is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Aziz, K., Settari, A.: Petroleum reservoir simulation. Applied Science Publ. Ltd, London (1979)

    Google Scholar 

  • Barenblatt, G.I., Entov, V.M., Ryzhik, V.M.: Theory of Fluid Flows Through Natural Rocks. Kluwer Academic Publishers, Norwell (1989)

    Google Scholar 

  • Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework. Computing 82(2–3), 103–119 (2008a)

    Article  Google Scholar 

  • Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE. Computing 82(2–3), 121–138 (2008b)

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. Courier Corporation, Chelmsford (2013)

    Google Scholar 

  • Berg, S., Oedai, S., Ott, H.: Displacement and mass transfer between saturated and unsaturated CO2-brine systems in sandstone. Int. J. Greenhouse Gas Control 12, 478 (2013)

    Article  Google Scholar 

  • Binning, P., Celia, M.A.: Practical implementation of the fractional flow approach to multi-phase flow simulation. Adv. Water Resour. 22(5), 461 (1999)

    Article  Google Scholar 

  • Buckley, S.E., Leverett, M.: Mechanism of fluid displacement in sands. Trans. AIME 146(1), 107 (1942)

    Article  Google Scholar 

  • Chen, Z., Huan, G., Ma, Y.: Computational Methods for Multiphase Flows in Porous Media, vol. 2. SIAM, Philadelphia (2006)

    Book  Google Scholar 

  • Christie, M., Bond, D., et al.: Detailed simulation of unstable processes in miscible flooding. SPE Reservoir Eng. 2(4), 514 (1987)

    Article  Google Scholar 

  • Chuoke, R., Van Meurs, P., van der Poel, C., et al.: he instability of slow, immiscible, viscous liquid-liquid displacements in permeable media. Pet. Trans. AIME 216, 188 (1959)

    Article  Google Scholar 

  • Dullien, F.A.: Porous Media: Fluid Transport and Pore Structure. Academic Press, San Diego (2012)

    Google Scholar 

  • Engelberts, W., Klinkenberg, L., et al.: In 3rd World Petroleum Congress (1951)

  • Fayers, F.J., et al.: An approximate model with physically interpretable parameters for representing miscible viscous fingering. SPE Reservoir Eng. 3(2), 551 (1988)

    Article  Google Scholar 

  • Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., Müthing, S., Nuske, P., Tatomir, A., Wolff, M., et al.: DuMux: DUNE for multi-{phase, component, scale, physics,…} flow and transport in porous media. Adv. Water Resour. 34(9), 1102 (2011)

    Article  Google Scholar 

  • Gao, et al.: In SPE Heavy Oil Conference and Exhibition. Society of Petroleum Engineers (2011)

  • Gardner, J., Ypma, J., et al.: An investigation of phase behavior-macroscopic bypassing interaction in CO2 flooding. Soc. Pet. Eng. J. 24(5), 508 (1984)

    Article  Google Scholar 

  • Hagoort, J., et al.: Displacement stability of water drives in water-wet connate-water-bearing reservoirs. Soc. Pet. Eng. J. 14(1), 63 (1974)

    Article  Google Scholar 

  • Hamid, S.A., Muggeridge, A.: Analytical solution of polymer slug injection with viscous fingering. Comput. Geosci. 22(3), 711 (2018)

    Article  Google Scholar 

  • Hamid, S., Muggeridge, A., et al.: In SPE Improved Oil Recovery Conference. Society of Petroleum Engineers (2018)

  • Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Springer, Berlin (1997)

    Book  Google Scholar 

  • Homsy, G.M.: Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19(1), 271 (1987)

    Article  Google Scholar 

  • Keyes, D.E., McInnes, L.C., Woodward, C., Gropp, W., Myra, E., Pernice, M., Wohlmuth, B.: Multiphysics simulations: challenges and opportunities. Int. J. High Perform. Comput. Appl. 27(1), 4 (2013)

    Article  Google Scholar 

  • Koval, E., et al.: A method for predicting the performance of unstable miscible displacement in heterogeneous media. Soc. Pet. Eng. J. 3(2), 145 (1963)

    Article  Google Scholar 

  • Lake, L.: Enhanced Oil Recovery. Prentice-Hall, Englewood Cliffs (1989)

    Google Scholar 

  • Leverett, M.: Capillary behavior in porous solids. Trans. AIME 142(1), 152 (1941)

    Article  Google Scholar 

  • List of reservoir simulation software. http://petrofaq.org/wiki/List_of_Reservoir_Simulation_Software

  • Luo, H., Delshad, M., Pope, G.A., Mohanty, K.K., et al.: In SPE Reservoir Simulation Conference. Society of Petroleum Engineers (2017)

  • Luo, H., Delshad, M., Pope, G.A., Mohanty, K.K.: Scaling up the interplay of fingering and channeling for unstable water/polymer floods in viscous-oil reservoirs. J. Pet. Sci. Eng. 165, 332 (2018)

    Article  Google Scholar 

  • Moore, T., Slobod, R.: The effect of viscosity and capillarity on the displacement of oil by water. Producers Mon. 20(10), 20 (1956)

    Google Scholar 

  • Muskat, M.: Physical Principles of Oil Production. IHRDC, Boston (1981)

    Google Scholar 

  • Ott, H., Berg, S.: Stability of CO2-brine primary drainage. Energy Procedia 37, 4568 (2013)

    Article  Google Scholar 

  • Peters, E.J., Flock, D.L.: The onset of instability during two-phase immiscible displacement in porous media. Soc. Pet. Eng. J. 21(2), 249 (1981)

    Article  Google Scholar 

  • Peters, E., Broman W. Jr., Broman, J., et al.: In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1984)

  • Pryor, R.W.: Multiphysics Modeling Using COMSOL®: A First Principles Approach. Jones & Bartlett Publishers, Burlington (2009)

    Google Scholar 

  • Saffman, P.G., Taylor, G.I.: The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 245(1242), 312 (1958)

    Google Scholar 

  • Sheng, J.: Modern Chemical Enhanced Oil Recovery: Theory and Practice. Gulf Professional Publishing, Houston (2010)

    Google Scholar 

  • Skauge, A., Sorbie, K., et al.: In SPE EOR Conference at Oil and Gas West Asia. Society of Petroleum Engineers (2014)

  • Tan, C., Homsy, G.: Simulation of nonlinear viscous fingering in miscible displacement. Phys. Fluids 31(6), 1330 (1988)

    Article  Google Scholar 

  • Tardy, P., Pearson, J.: A 1D-averaged model for stable and unstable miscible flows in porous media with varying Peclet numbers and aspect ratios. Transp. Porous Media 62(2), 205 (2006)

    Article  Google Scholar 

  • Todd, M., Longstaff, W., et al.: The development, testing, and application of a numerical simulator for predicting miscible flood performance. J. Pet. Technol. 24(7), 874 (1972)

    Article  Google Scholar 

  • Trojer, M., Szulczewski, M.L., Juanes, R.: Stabilizing fluid–fluid displacements in porous media through wettability alteration. Phys. Rev. Appl. 3(5), 054008 (2015)

    Article  Google Scholar 

  • Van Meurs, P.: A theoretical description of water-drive processes involving viscous fingering. Trans. AIME 213, 103 (1958)

    Article  Google Scholar 

  • Zimmerman, W., Homsy, G.: Three-dimensional viscous fingering: a numerical study. Phys. Fluids A Fluid Dyn. 4(9), 1901 (1992a)

    Article  Google Scholar 

  • Zimmerman, W., Homsy, G.: Viscous fingering in miscible displacements: unification of effects of viscosity contrast, anisotropic dispersion, and velocity dependence of dispersion on nonlinear finger propagation. Phys. Fluids A Fluid Dyn. 4(11), 2348 (1992b)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support to this work by President RF Grant 075-15-2019-204 and by \(\ll\)Native towns\(\gg\), a social investment program of PJSC \(\ll\)Gazprom Neft\(\gg\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Campoli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakharev, F., Campoli, L., Enin, A. et al. Numerical Investigation of Viscous Fingering Phenomenon for Raw Field Data. Transp Porous Med 132, 443–464 (2020). https://doi.org/10.1007/s11242-020-01400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01400-5

Keywords

Navigation