Skip to main content
Log in

Synthetic aperture processing for wireless communication signals with passive moving array

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the use of synthetic aperture technique in communication signal processing with passive moving arrays. First, demodulation preprocessing schemes proper to distinctive situations are provided to increase the coherence time of target signal. Then demodulated signal sequence is resampled and reconstructed for synthetic array data production. Secondly we consider the practical implementation of direction of arrival estimation and present approaches to adjust for synthetic array data. The proposed technique incorporates Doppler information caused by the moving of platform into spatial processing, leading to significant enhancement in achievable array performance. Both theoretical analysis and numerical simulations are presented to illustrate the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ashraf, T., Georges, K., et al. (2016). A Look at the recent wireless positioning techniques with a focus on algorithms for moving receivers. IEEE Access, 4, 6652–6680.

    Article  Google Scholar 

  • Bin, Y., Cheng, W., et al. (2018). A joint space-time array for communication signals based on a moving platform and performance analysis. Sensors, 18(10), 3388–3396.

    Article  Google Scholar 

  • Bottenus, N., Byram, B. C., Dahl, J. J., et al. (2013). Synthetic aperture focusing for short-lag spatial coherence imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(9), 1816–1826.

    Article  Google Scholar 

  • Chen, H., Hou, C., et al. (2017). ESPRIT-like two-dimensional direction finding for mixed circular and strictly noncircular sources based on joint diagonalization. Signal Processing, 141, 48–56.

    Article  Google Scholar 

  • Cheng, W., Jun, T., & Ying, W. (2016). Eigenspace-based beamforming technique for multipath coherent signals reception. Signal Processing, 128, 154.

    Article  Google Scholar 

  • D’Spain, G. L., Terrill, E., Chadwell, C. D., et al. (2006). Active control of passive acoustic fields: Passive synthetic aperture/Doppler beamforming with data from an autonomous vehicle. Journal of the Acoustical Society of America, 120(6), 3635–3654.

    Article  Google Scholar 

  • Gao, F., Cui, T., Nallanathan, A., et al. (2008). Maximum likelihood based estimation of frequency and phase offset in DCT OFDM systems under non-circular transmissions: Algorithms, analysis and comparisons. IEEE Transactions on Communications, 56(9), 1425–1429.

    Article  Google Scholar 

  • Guerci, J. R., & Bergin, J. S. (2002). Principal components, covariance matrix tapers, and the subspace leakage problem. IEEE Transactions on Aerospace and Electronic Systems, 38(1), 152–162.

    Article  Google Scholar 

  • Jiexin, Y., Ding, W., & Ying, W. (2017a). Direct localization of multiple stationary narrowband sources based on angle and Doppler. IEEE Communications Letters, 21(12), 2630–2633.

    Article  Google Scholar 

  • Jiexin, Y., Ying, W., & Ding, W. (2017b). Direct position determination of multiple noncircular sources with a moving array. Circuits, Systems, and Signal Processing, 36(10), 4050–4076.

    Article  Google Scholar 

  • Li, A., Wang, S. (2011). Propagator method for DOA estimation using fourth-order cumulant. In IEEE international conference on wireless communications, networking and mobile computing (pp. 1–4).

  • Li, J. F., & Zhang, X. F. (2014). Unitary reduced-dimensional ESPRIT for angle estimation in monostatic MIMO radar with rectangular arrays. IET Radar, Sonar and Navigation, 8(6), 575–584.

    Article  Google Scholar 

  • Lin, T. C., Phoong, S. M. (2014). A low-complexity blind CFO estimation for OFDM systems. In: IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 8083–8086).

  • Mason, E., Son, I. Y., & Yazici, B. (2015). Passive synthetic aperture radar imaging using low-rank matrix recovery methods. IEEE Journal of Selected Topics in Signal Processing, 9(8), 1570–1582.

    Article  Google Scholar 

  • Moreira, A., Prats-Iraola, P., Younis, M., et al. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1), 6–43.

    Article  Google Scholar 

  • Oudompheng, B., Nicolas, B., Lamotte, L. (2015). Passive synthetic aperture array to improve noise mapping of a moving ship. In IEEE oceans (pp. 1–6).

  • Papakonstantinou, K., Slock, D. (2009). Hybrid TOA/AOD/Doppler shift localization algorithm for NLOS environments. In: IEEE PIMRC (pp. 13–16).

  • Quyen, N. X., Cong, L. V., Long, N. H., et al. (2014). An OFDM-based chaotic DSSS communication system with M-PSK modulation. In: IEEE fifth international conference on communications and electronics (pp. 106–111).

  • Ramirez, J. R., Jr., & Krolik, J. L. (2016). Synthetic aperture processing for passive co-prime linear sensor arrays. Digital Signal Processing, 61, 1–14.

    Google Scholar 

  • Sekine, K., Kikuma, N., Hirayama, H., et al. (2013). DOA estimation using spatial smoothing with overlapped effective array aperture. In IEEE microwave conference proceedings (pp. 1100–1102).

  • Stergiopoulos, S., & Urban, H. (2002). A new passive synthetic aperture technique for towed arrays. IEEE Journal of Oceanic Engineering, 17(1), 16–25.

    Article  Google Scholar 

  • Vallet, P., Mestre, X., & Loubaton, P. (2015). Performance analysis of an improved MUSIC DOA estimator. IEEE Transactions on Signal Processing, 63(23), 6407–6422.

    Article  MathSciNet  Google Scholar 

  • Van Trees, H. L. (2002). Optimum array processing. New York: Wiley.

    Book  Google Scholar 

  • Williams, D. P. (2015). Fast target detection in synthetic aperture sonar imagery: A new algorithm and large-scale performance analysis. IEEE Journal of Oceanic Engineering, 40(1), 71–92.

    Article  Google Scholar 

  • Yankui, Z., Haiyun, X., & Bin, B. (2018). Direct position determination of non-circular sources based on a Doppler-extended aperture with a moving coprime array. IEEE Access, 6, 2169–3536.

    Google Scholar 

  • Yu, Z., Shi, Y. Q., Su, W. (2004). A blind carrier frequency estimation algorithm for digitally modulated signals. In: IEEE military communications conference (MILCOM) (Vol. 1, pp. 48–53).

  • Yufeng, Z., Zhongfu, Y., & Chao, L. (2010). An efficient DOA estimation method in multipath environment. Signal Processing, 90, 707–713.

    Article  Google Scholar 

  • Yunlong, W., Ying, W., et al. (2016). An efficient direct position determination algorithm combined with time delay and Doppler. Circuits, Systems, and Signal Processing, 35(2), 635–649.

    Article  Google Scholar 

  • Zhang, Y., & Wang, Y. (2016). Decision-aided maximum likelihood phase estimation with optimum block length in hybrid QPSK/16QAM coherent optical WDM systems. Optics Communications, 358, 108–119.

    Article  Google Scholar 

  • Zhang, W., & Yin, Q. (2013). Blind maximum likelihood carrier frequency offset estimation for OFDM with multi-antenna receiver. IEEE Transactions on Signal Processing, 61(9), 2295–2307.

    Article  Google Scholar 

  • Zheng, L., Yuanyuan, W., & Yunhe, C. (2014). Real-domain GMUSIC algorithm based on unitary-transform for low-angle estimation. Journal of Systems Engineering and Electronics, 25(5), 794–799.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from National Natural Science Foundation of China (Grant Nos. 61201381, 61401513, 61772548 and 61801514), China Postdoctoral Science Foundation (Grant No. 2016M592989), Key Scientific and Technological Research Project in Henan Province (Grant No. 192102210092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To derive (23), the differential of \( \varvec{c}(\theta ) \) is firstly computed as

$$ \begin{aligned} \frac{{\partial \varvec{c}(\theta )}}{\partial \theta } & = j2\pi M\cos \theta \left[ {0,\frac{{df_{c} }}{c}e^{{j2\pi M\frac{{df_{c} }}{c}\sin \theta }} } \right.,{ \ldots },\left( {N - 1} \right)\frac{{df_{c} }}{c}e^{{j2\pi M\left( {N - 1} \right)\frac{{df_{c} }}{c}\sin \theta }} , \\ & \quad \frac{{vf_{c} }}{{cf_{s} }}e^{{j2\pi M\frac{{vf_{c} }}{{cf_{s} }}\sin \theta }} ,{ \ldots },\left. {\left( {\frac{{\left( {N - 1} \right)d}}{c} + \frac{{\left( {L - 1} \right)v}}{{cf_{s} }}} \right)f_{c} e^{{j2\pi M\left( {\frac{{\left( {N - 1} \right)df_{c} }}{c} + \frac{{\left( {L - 1} \right)vf_{c} }}{{cf_{s} }}} \right)\sin \theta }} } \right] \\ \end{aligned} $$
(24)

Then the inner product of \( {{\partial \varvec{c}(\theta )} \mathord{\left/ {\vphantom {{\partial \varvec{c}(\theta )} {\partial \theta }}} \right. \kern-0pt} {\partial \theta }} \) leads to

$$ \frac{{\partial {\mathbf{c}}^{H} (\theta )}}{\partial \theta }\frac{{\partial {\mathbf{c}}(\theta )}}{\partial \theta } = NL\left( {2\pi M\cos \theta \frac{{f_{c} }}{c}} \right)^{2} \left( {\frac{{\left( {L - 1} \right)\left( {2L - 1} \right)}}{6}\left( {\frac{v}{{f_{s} }}} \right)^{2} } \right.\left. { + \frac{{\left( {N - 1} \right)\left( {2N - 1} \right)}}{6}d^{2} + \frac{{\left( {L - 1} \right)\left( {N - 1} \right)}}{2}\frac{vd}{{f_{s} }}} \right) $$
(25)

Similarly, the inner product of vector \( \varvec{c}(\theta ) \) and \( {{\partial \varvec{c}(\theta )} \mathord{\left/ {\vphantom {{\partial \varvec{c}(\theta )} {\partial \theta }}} \right. \kern-0pt} {\partial \theta }} \) becomes

$$ \frac{{\partial \varvec{c}^{H} (\theta )}}{\partial \theta }\varvec{c}(\theta ) = - j2\pi NLM\cos \theta \frac{{f_{c} }}{c}\left( {\frac{{\left( {L - 1} \right)}}{2}\frac{v}{{f_{s} }} + \frac{{\left( {N - 1} \right)}}{2}d} \right) $$
(26)

With (25) and (26), the mean square error defined in (22) can be written as

$$ E\left[ {\left| {\hat{\theta } - \theta } \right|^{2} } \right] = \frac{{6\sigma_{n}^{2} \left( {1 + \frac{{\sigma_{n}^{2} }}{{LN\sigma_{\gamma }^{2} }}} \right)}}{{NLP\sigma_{\gamma }^{2} \left( {2\pi M\cos \theta \frac{{f_{c} }}{c}} \right)^{2} }}\left( {\left( {L^{2} - 1} \right)\left( {\frac{v}{{f_{s} }}} \right)^{2} + \left( {N^{2} - 1} \right)d^{2} } \right)^{ - 1} $$
(27)

Denoting \( {{LN\sigma_{\gamma }^{2} } \mathord{\left/ {\vphantom {{LN\sigma_{\gamma }^{2} } {\sigma_{n}^{2} }}} \right. \kern-0pt} {\sigma_{n}^{2} }} \) as the array SNR (ASNR) and supposing \( L^{2} \gg 1\;,\;N^{2} \gg 1\; \), \( E\left[ {\left| {\hat{\theta } - \theta } \right|^{2} } \right] \) can be approximated as (23).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Wang, D. Synthetic aperture processing for wireless communication signals with passive moving array. Multidim Syst Sign Process 31, 1491–1507 (2020). https://doi.org/10.1007/s11045-020-00717-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-020-00717-0

Keywords

Navigation