Skip to main content

Advertisement

Log in

An optimal network coding based backpressure routing approach for massive IoT network

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In order to mitigate the power consumption issue for the sensor’s nodes, an efficient power optimized routing protocol is needed. Therefore, this paper proposes a network coding backpressure routing (NCBPR) routing scheme for a large-scale Internet of Things (IoT) networks, which exploits the backpressure algorithm in order to divert packets flow. In the network, the packets are flowing from the highly congested node to low congested node, which helps to balance the load and optimized the fair use of the battery power of all the participating nodes. It divides the network into the small clusters, where the selection of clusters head depends upon an additional parameter of battery power apart from other optimum path parameters. It also employs an efficient data aggregation mechanism, which improves the throughput of the network by eliminating redundant packets. The network has been designed by considering 300 nodes in a network and the results have been drawn in terms of network throughput, packet delivery ratio and energy consumption. The results are presented in comparison with conventional well-known information-fusion-based role assignment (InFRA) and data routing for in-network aggregation (DRINA) routing schemes. The results prove that the proposed NCBPR scheme delivers significant improvement, such as throughput which increased by 21.38 and 12.13%, packet delivery ratio improved by 24.73 and 11.38%, and sensors node’s energy consumption is decreased by 61.46 and 44.35% as compared to conventional InFRA and DRINA schemes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shafique, K., Khawaja, B. A., Sabir, F., Qazi, S., & Mustaqim, M. (2020). Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access,8, 23022–23040. https://doi.org/10.1109/ACCESS.2020.2970118.

    Article  Google Scholar 

  2. Kuo, Y., Li, C., Jhang, J., & Lin, S. (2018). Design of a wireless sensor network-based IoT platform for wide area and heterogeneous applications. IEEE Sensors Journal,18(12), 5187–5197. https://doi.org/10.1109/JSEN.2018.2832664.

    Article  Google Scholar 

  3. Hindia, M. N., Qamar, F., Abbas, T., Dimyati, K., Abu Talip, M. S., & Amiri, I. S. (2019). Interference cancelation for high-density fifth-generation relaying network using stochastic geometrical approach. International Journal of Distributed Sensor Networks,15(7), 1550147719855879.

    Article  Google Scholar 

  4. Hindia, M. N., Qamar, F., Rahman, T. A., & Amiri, I. S. (2018). A stochastic geometrical approach for full-duplex MIMO relaying model of high-density network. Ad Hoc Networks,74, 34–46.

    Article  Google Scholar 

  5. Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal,3(5), 637–646.

    Article  Google Scholar 

  6. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal,4(5), 1125–1142.

    Article  Google Scholar 

  7. Stankovic, J. A. (2014). Research directions for the internet of things. IEEE Internet of Things Journal,1(1), 3–9.

    Article  MathSciNet  Google Scholar 

  8. Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics,10(4), 2233–2243.

    Article  Google Scholar 

  9. Gachhadar, A., Qamar, F., Dong, D. S., Majed, M. B., Hanafi, E., & Amiri, I. S. (2019). Traffic offloading in 5G heterogeneous networks using rank based network selection. Journal of Engineering Science and Technology Review,12(2), 9–16.

    Article  Google Scholar 

  10. Qi, W., et al. (2018). Minimizing delay and transmission times with long lifetime in code dissemination scheme for high loss ratio and low duty cycle wireless sensor networks. Sensors,18(10), 3516.

    Article  Google Scholar 

  11. Gui, J., Li, Z., & Zeng, Z. (2019). Improving energy-efficiency for resource allocation by relay-aided in-band D2D communications in C-RAN-based systems. IEEE Access,7, 8358–8375.

    Article  Google Scholar 

  12. Ren, J., Guo, H., Xu, C., & Zhang, Y. (2017). Serving at the edge: A scalable iot architecture based on transparent computing. IEEE Network,31(5), 96–105.

    Article  Google Scholar 

  13. Zhou, H., Wang, H., Li, X., & Leung, V. C. M. (2018). A survey on mobile data offloading technologies. IEEE Access,6, 5101–5111.

    Article  Google Scholar 

  14. Deng, Q., et al. (2019). Compressed sensing for image reconstruction via back-off and rectification of greedy algorithm. Signal Processing,157, 280–287.

    Article  Google Scholar 

  15. Ju, X., et al. (2018). An energy conserving and transmission radius adaptive scheme to optimize performance of energy harvesting sensor networks. Sensors,18(9), 2885.

    Article  Google Scholar 

  16. Qamar, F., et al. (2019). Investigation of future 5G-IoT millimeter-wave network performance at 38 GHz for urban microcell outdoor environment. Electronics,8(5), 495.

    Article  Google Scholar 

  17. Tilwari, V., Dimyati, K., Hindia, M. H. D., Fattouh, A., & Amiri, I. S. (2019). Mobility, residual energy, and link quality aware multipath routing in MANETs with Q-learning algorithm. Applied Sciences,9(8), 1582.

    Article  Google Scholar 

  18. Amiri, I. S., Prakash, J., Balasaraswathi, M., et al. (2019). DABPR: A large-scale internet of things-based data aggregation back pressure routing for disaster management. Wireless Networks. https://doi.org/10.1007/s11276-019-02122-3.

    Article  Google Scholar 

  19. Le Nguyen, P., Ji, Y., Liu, Z., Vu, H., & Nguyen, K.-V. (2017). Distributed hole-bypassing protocol in WSNs with constant stretch and load balancing. Computer Networks,129, 232–250.

    Article  Google Scholar 

  20. Liu, X., Yang, Q., Luo, J., Ding, B., & Zhang, S. (2018). An energy-aware offloading framework for edge-augmented mobile RFID systems. IEEE Internet of Things Journal,6, 3994–4004.

    Article  Google Scholar 

  21. Zhang, S., Wang, G., Bhuiyan, M. Z. A., & Liu, Q. (2018). A dual privacy preserving scheme in continuous location-based services. IEEE Internet of Things Journal,5(5), 4191–4200.

    Article  Google Scholar 

  22. Huang, M., Liu, W., Wang, T., Song, H., Li, X., & Liu, A. (2019). A queuing delay utilization scheme for on-path service aggregation in services-oriented computing networks. IEEE Access,7, 23816–23833.

    Article  Google Scholar 

  23. Huang, M., Liu, A., Zhao, M., & Wang, T. (2019). Multi working sets alternate covering scheme for continuous partial coverage in WSNs. Peer-to-Peer Networking and Applications,12(3), 553–567.

    Article  Google Scholar 

  24. Tilwari, V., Hindia, M. N., Dimyati, K., Qamar, F., Talip, A., & Sofian, M. (2019). Contention window and residual battery aware multipath routing schemes in mobile ad hoc networks. International Journal of Technology,10(7), 1376–1384.

    Article  Google Scholar 

  25. Din, S., Ahmad, A., Paul, A., Rathore, M. M. U., & Jeon, G. (2017). A cluster-based data fusion technique to analyze big data in wireless multi-sensor system. IEEE Access,5, 5069–5083. https://doi.org/10.1109/ACCESS.2017.2679207.

    Article  Google Scholar 

  26. Quoc, D. N., Bi, L., Wu, Y., He, S., Li, L., & Guo, D. (2019). Energy efficiency clustering based on Gaussian network for wireless sensor network. IET Communications,13(6), 741–747. https://doi.org/10.1049/iet-com.2018.5398.

    Article  Google Scholar 

  27. Singh, S. K., Kumar, P., & Singh, J. P. (2017). A survey on successors of LEACH protocol. IEEE Access,5, 4298–4328. https://doi.org/10.1109/ACCESS.2017.2666082.

    Article  Google Scholar 

  28. Zidi, S., Moulahi, T., & Alaya, B. (2018). Fault detection in wireless sensor networks through SVM classifier. IEEE Sensors Journal,18(1), 340–347. https://doi.org/10.1109/JSEN.2017.2771226.

    Article  Google Scholar 

  29. Kaiwartya, O., et al. (2018). Virtualization in wireless sensor networks: Fault Tolerant embedding for Internet of Things. IEEE Internet of Things Journal,5(2), 571–580. https://doi.org/10.1109/JIOT.2017.2717704.

    Article  Google Scholar 

  30. Dong, M., Ota, K., & Liu, A. (2016). RMER: Reliable and energy-efficient data collection for large-scale wireless sensor networks. IEEE Internet of Things Journal,3(4), 511–519. https://doi.org/10.1109/JIOT.2016.2517405.

    Article  Google Scholar 

  31. Qamar, F., Dimyati, K. B., Hindia, M. N., Noordin, K. A. B., & Al-Samman, A. M. (2017). A comprehensive review on coordinated multi-point operation for LTE-A. Computer Networks,123, 19–37.

    Article  Google Scholar 

  32. Gachhadar, A., Hindia, M. N., Qamar, F., Siddiqui, M. H. S., Noordin, K. A., & Amiri, I. S. (2018). Modified genetic algorithm based power allocation scheme for amplify-and-forward cooperative relay network. Computers & Electrical Engineering,69, 628–641.

    Article  Google Scholar 

  33. Qamar, F., Dimyati, K., Hindia, M. N., Noordin, K. A., & Amiri, I. S. (2019). A stochastically geometrical poisson point process approach for the future 5G D2D enabled cooperative cellular network. IEEE Access,7, 60465–60485.

    Article  Google Scholar 

  34. Noordin, K. A. B., Hindia, M. N. Qamar, F., & Dimyati, K. (2018). Power allocation scheme using PSO for amplify and forward cooperative relaying network. In Science and information conference (pp. 636–647). Springer.

  35. Hindia, M. N., Qamar, F., Majed, M. B., Rahman, T. A., & Amiri, I. S. (2019). Enabling remote-control for the power sub-stations over LTE-A networks. Telecommunication Systems,70(1), 37–53.

    Article  Google Scholar 

  36. Amiri, I., Dong, D. S., Pokhrel, Y. M., Gachhadar, A., Maharjan, R. K., & Qamar, F. (2019). Resource tuned optimal random network coding for single hop multicast future 5G networks. International Journal of Electronics and Telecommunications,65(3), 463–469.

    Google Scholar 

  37. Qamar, F., Hindia, M. N., Dimyati, K., Noordin, K. A., & Amiri, I. S. (2019). Interference management issues for the future 5G network: A review. Telecommunication Systems,71, 627–643.

    Article  Google Scholar 

  38. Zhu, R., Zhang, X., Liu, X., Shu, W., Mao, T., & Jalaian, B. (2015). ERDT: Energy-efficient reliable decision transmission for intelligent cooperative spectrum sensing in industrial IoT. IEEE Access,3, 2366–2378. https://doi.org/10.1109/ACCESS.2015.2501644.

    Article  Google Scholar 

  39. Perera, C., Talagala, D. S., Liu, C. H., & Estrella, J. C. (2015). Energy-efficient location and activity-aware on-demand mobile Distributed sensing platform for sensing as a service in IoT clouds. IEEE Transactions on Computational Social Systems,2(4), 171–181. https://doi.org/10.1109/TCSS.2016.2515844.

    Article  Google Scholar 

  40. Barcelo, M., Correa, A., Llorca, J., Tulino, A. M., Vicario, J. L., & Morell, A. (2016). IoT-cloud service optimization in next generation smart environments. IEEE Journal on Selected Areas in Communications,34(12), 4077–4090. https://doi.org/10.1109/JSAC.2016.2621398.

    Article  Google Scholar 

  41. Kaur, N., & Sood, S. K. (2017). An energy-efficient architecture for the Internet of Things (IoT). IEEE Systems Journal,11(2), 796–805. https://doi.org/10.1109/JSYST.2015.2469676.

    Article  Google Scholar 

  42. Duan, J., Gao, D., Yang, D., Foh, C. H., & Chen, H. (2014). An energy-aware trust derivation scheme with game theoretic approach in wireless sensor networks for IoT applications. IEEE Internet of Things Journal,1(1), 58–69. https://doi.org/10.1109/JIOT.2014.2314132.

    Article  Google Scholar 

  43. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications,1(4), 660–670. https://doi.org/10.1109/TWC.2002.804190.

    Article  Google Scholar 

  44. Dasgupta, K., Kalpakis, K., & Namjoshi, P. (2003). An efficient clustering-based heuristic for data gathering and aggregation in sensor networks, vol. 3. IEEE (pp. 1948–1953).

  45. Ahlswede, R., Cai, N., Li, S. Y., & Yeung, R. W. (2000). Network information flow. IEEE Transactions on Information Theory,46(4), 1204–1216.

    Article  MathSciNet  MATH  Google Scholar 

  46. Shao, X., Wang, C., Zhao, C., & Gao, J. (2018). Traffic shaped network coding aware routing for wireless sensor networks. IEEE Access,6, 71767–71782. https://doi.org/10.1109/ACCESS.2018.2882427.

    Article  Google Scholar 

  47. Katti, S., Rahul, H., Hu, W., Katabi, D., Médard, M., & Crowcroft, J. (2006). XORs in the air: Practical wireless network coding, vol. 36. ACM, 4 ed. (pp. 243–254).

  48. Kuo, W.-C., & Wang, C.-C. (2014). Robust and optimal opportunistic scheduling for downlink 2-flow inter-session network coding with varying channel quality. IEEE (pp. 655–663).

  49. Ho, T., & Viswanathan, H. (2009). Dynamic algorithms for multicast with intra-session network coding. IEEE Transactions on Information Theory,55(2), 797–815.

    Article  MathSciNet  MATH  Google Scholar 

  50. Sagduyu, Y. E., Berry, R. A., & Guo, D. (2013). Throughput and stability for relay-assisted wireless broadcast with network coding. IEEE Journal on Selected Areas in Communications,31(8), 1506–1516.

    Article  Google Scholar 

  51. Cheng, C.-T., Leung, H., & Maupin, P. (2013). A delay-aware network structure for wireless sensor networks with in-network data fusion. IEEE Sensors Journal,13(5), 1622–1631.

    Article  Google Scholar 

  52. Wang, T., Vosoughi, A., Heinzelman, W., & Seyedi, A. (2012). Maximizing gathered samples in wireless sensor networks with Slepian–Wolf coding. IEEE Transactions on Wireless Communications,11(2), 751–761.

    Article  Google Scholar 

  53. Cristescu, R., Beferull-Lozano, B., Vetterli, M., & Wattenhofer, R. (2006). Network correlated data gathering with explicit communication: NP-completeness and algorithms. IEEE/ACM Transactions on Networking (ToN),14(1), 41–54.

    Article  Google Scholar 

  54. Nakamura, E. F., Oliveira, H. A. B. F., Pontello, L. F., & Loureiro, A. A. F. (2006). On demand role assignment for event-detection in sensor networks. In 11th IEEE symposium on computers and communications (ISCC’06), 26–29 June 2006 (pp. 941–947). https://doi.org/10.1109/iscc.2006.110.

  55. Villas, L. A., Boukerche, A., Ramos, H. S., de Oliveira, H. A. B. F., de Araujo, R. B., & Loureiro, A. A. F. (2013). DRINA: A lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Transactions on Computers,62(4), 676–689.

    Article  MathSciNet  MATH  Google Scholar 

  56. Rappaport, T. S. (1996). Wireless communications: Principles and practice. New Jersey: Prentice Hall PTR.

    MATH  Google Scholar 

  57. Hu, S., & Han, J. (2014). Power control strategy for clustering wireless sensor networks based on multi-packet reception. IET Wireless Sensor Systems,4(3), 122–129.

    Article  Google Scholar 

  58. Guo, B., Li, H., Zhou, C., & Cheng, Y. (2011). Analysis of general network coding conditions and design of a free-ride-oriented routing metric. IEEE Transactions on Vehicular Technology,60(4), 1714–1727.

    Article  Google Scholar 

  59. Bui, L., Srikant, R., & Stolyar, A. (2009). Novel architectures and algorithms for delay reduction in back-pressure scheduling and routing. In IEEE INFOCOM 2009, 19-25 April 2009,(pp. 2936–2940). https://doi.org/10.1109/infcom.2009.5062262.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iraj Sadegh Amiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malathy, S., Porkodi, V., Sampathkumar, A. et al. An optimal network coding based backpressure routing approach for massive IoT network. Wireless Netw 26, 3657–3674 (2020). https://doi.org/10.1007/s11276-020-02284-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02284-5

Keywords

Navigation