Skip to main content
Log in

Effect of thermal cycling on mechanical and thermal properties of basalt fibre-reinforced epoxy composites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Current study investigated the effect of thermal fatigue on mechanical and thermal properties of basalt fibre-reinforced polymer (BFRP) composites. To this, basalt fibre textiles in 2/2 twill pattern was used to fabricate BFRP composites. Thermal cycling experiment was carried out between \(-40\) and \(+120^{\circ }\)C for 20, 40, 60, 80 and 120 cycles. Moreover, dynamic mechanical analyzer (DMA) was used to evaluate the effect of thermal cycling on thermal properties of BFRPs. Moreover, we compared the extracted viscoelastic characteristics, such as storage modulus, loss modulus and loss factor curves with original thermal-treated BFRP specimens. Based on the results, thermal cycling affected the characteristics of composites in the post-curing stage due to an increase in temperature. Finally, the effect of thermal cycling on water absorption properties of BFRP composites was examined by hydrophobicity test. The results showed that tensile strength, flexural modulus and ILSS values increased with the increase in the number of cycles up to 80 cycles. In other words, an increase in the number of cycles increased the hydrophobicity of BFRP composites by decreasing the contact angles. Finally, the mechanical properties of tested composites were significantly decreased when the number of cycles reached 120. This was due to the mismatch of thermal expansion coefficient and long crack formation in the structure of composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Saheb D N and Jog J P 1999 Adv. Polym. Tech. 18 351

    CAS  Google Scholar 

  2. Lee J H, Rhee K Y and Park S J 2010 Mater. Sci. Eng. A 527 6838

    Google Scholar 

  3. Kalam A, Saharib B B, Khalid Y A and Wong S V 2005 Compos. Struct. 71 34

    Google Scholar 

  4. Artemenko S E and Kadykova Y A 2008 Fibre Chem40 37

    CAS  Google Scholar 

  5. Dai J, Pellaton D and Hahn H T 2003 Polym. Compos. 24 672

    CAS  Google Scholar 

  6. Dong C, Ranaweera-Jayawardena H A and Davies I J 2012 Compos. Part B  43 573

    CAS  Google Scholar 

  7. Wei B, Cao H L and Song S H 2011 Corros. Sci. 53 426

    CAS  Google Scholar 

  8. Czigany T 2006 Compos. Sci. Tech. 66 3210

    CAS  Google Scholar 

  9. Liu Q, Shaw M T, Parnas R S and McDonell A M 2006 Polym. Compos. 27 475

    CAS  Google Scholar 

  10. Rout J, Misra M, Tripathy S S, Nayak S K and Mohanty A K 2011 Compos. Sci. Tech. 61 1303

    Google Scholar 

  11. Alavudeen A, Rajini N, Karthikeyan S, Thiruchitrambalam M and Venkateshwaren N 2015 Mater. Des. 66 246

    CAS  Google Scholar 

  12. Carmisciano S, De Rosa I M, Sarasini F, Tamburrano A and Valente M 2011 Mater. Des. 32 337

    CAS  Google Scholar 

  13. Nayak S K, Mohanty S and Samal S K 2009 Mater. Sci. Eng. A 523 32

    Google Scholar 

  14. Silva R V, Aquino E M F, Rodrigues L P S and Barros A R F 2009 J. Reinf. Plast. Compos. 28 1857

    CAS  Google Scholar 

  15. Demir H, Atikler U, Balköse D and Tıhmınlıoğlu F 2006 Compos. Part A: Appl. S. Man. 37 447

    Google Scholar 

  16. Zhong L X, Fu S Y, Zhou X S and Zhan H Y 2011 Compos. Part A: Appl. S. Man.42 244

    Google Scholar 

  17. Sarasini F, Tirillò J, Valente M, Ferrante L, Cioffi S, Iannace S et al 2013 Mater. Des49 290

    CAS  Google Scholar 

  18. Szabo J S and Czigany T 2003 Polym. Test. 22 711

    CAS  Google Scholar 

  19. Zhang H, Zhang Z and Breidt C 2004 Compos. Sci. Tech64 2021

    CAS  Google Scholar 

  20. Dhand V, Mittal G, Rhee K Y, Park S J and Hui D 2015 Compos. Part B Eng. 73 166

    CAS  Google Scholar 

  21. Quagliarini E, Monni F, Lenci S and Bondioli F 2012 Construct. Build. Mater. 34 372

    Google Scholar 

  22. Zhang L, Du W, Nautiyal A, Liu Z and Zhang X 2018 Sci. China Mater. 61 303

    CAS  Google Scholar 

  23. Lobanov D S and Slovikov S V 2018 Mech. Compos. Mater54 351

    CAS  Google Scholar 

  24. Ramachandran B E, Velpari V and Balasubramanian N 1981 J. Mater. Sci. 16 3393

    CAS  Google Scholar 

  25. Sim J, Park C and Moon D Y 2005 Compos. Part B Eng. 36 504

    Google Scholar 

  26. Fiore V, Di Bella G and Valenza A 2011 Mater. Des. 32 2091

    CAS  Google Scholar 

  27. Fiore V, Scalici T, Di Bella G and Valenza A 2015 Compos. Part B Eng.74 74

    CAS  Google Scholar 

  28. Wei B, Cao H L and Song S H 2010 Mater. Des. 31 4244

    CAS  Google Scholar 

  29. Lu Z, Xian G and Li H 2016 Construct. Build. Mater. 127 1029

    CAS  Google Scholar 

  30. Qiang L, Montgomery T S and Parnas R S 2006 Polym. Compos27 475

    Google Scholar 

  31. Botev M, Betchev H, Bikiaris D and Panayiotou C 1999 J. Appl. Polym. Sci. 74 523

    CAS  Google Scholar 

  32. Chandekar G S and Kelkar A D 2014 Sci. World. J. 2014 1

    Google Scholar 

  33. Tehrani-Dehkordi M, Nosraty H and Rajabzadeh M H 2015 Fiber. Polym.16 918

    CAS  Google Scholar 

  34. Lopresto V, Leone C and De Iorio I 2011 Compos. Part B 42 717

    Google Scholar 

  35. Zhang Y, Yu C, Chu P K, Lv F, Zhang C, Ji J et al H 2012 Mater. Chem. Phys. 133 845

    CAS  Google Scholar 

  36. Azimpour Shishevan F and Akbulut H 2019 Iran J. Sci. Tech. Trans. Mech. Eng. 43 225

    Google Scholar 

  37. Kim H 2012 Fiber. Polym. 13 762

    CAS  Google Scholar 

  38. Kim H 2014 Fiber. Polym.14 1311

    Google Scholar 

  39. Liu Q, Shaw M T, Parnas R S and McDonnel A M 2006  Polym. Compos27 41

    Google Scholar 

  40. Azimpour F, Akbulut H and Mohtadi-Bonab M A 2017 J. Mater. Eng. Perform. 26 2890

    Google Scholar 

  41. Ray B C 2006 J. Appl. Polym. Sci. 100 2062

    CAS  Google Scholar 

  42. He J, Shi J, Cao X and Hu Y 2018 Adv. Civil Eng2018 1

    CAS  Google Scholar 

  43. Mikata Y and Taya M 1985 J. Comp. Mat. 19 554

    Google Scholar 

  44. Azimpour-Shishevan F, Akbulut H and Mohtadi-Bonab M A 2019 J. Dyn. Behav. Mater. 5 161

    Google Scholar 

  45. Kmita G, Nowak T and Sekula R 2012 Appl. Compos. Mater19 65

    CAS  Google Scholar 

  46. Chu Y H, Fu Q, Li H and Li K 2011 J. Alloys Compd. 509 8111

    CAS  Google Scholar 

  47. Wei L, Zhenhu C, Ding C, Cang F and Canrang W 2010 J. Alloys Compd. 504 522

    Google Scholar 

  48. Ramanujam N, Vaddadi P, Nakamura T and Singh R P 2008 Compos. Struct85 175

    Google Scholar 

  49. Asp L E, Berglund L A and Talreja R 1996 Compos. Sci. Tech.  56 1089

    CAS  Google Scholar 

  50. Ronga M Z, Zhang M Q and Liu Y 2006 Compos. Sci. Tech61 1437

    Google Scholar 

  51. Eslami-Farsani R, Khalili S M R and Najafi M 2013 J. Therm. Str36 684

    Google Scholar 

  52. Griffiths R and Ball A 2000 Compos. Sci. Tech. 60 2747

    CAS  Google Scholar 

  53. Segovia F, Ferrer C, Salvador M D and Amigó V 2001 Polym. Degrad. Stabil. 71 179

    CAS  Google Scholar 

  54. Komalan C, George K E, Kumar P A S and Varughese K 2007 Exp. Polym. Let. 1 641

    CAS  Google Scholar 

  55. Yu Q, Chen P, Gao Y, Mu J, Chen Y, Lu C et al 2011 Mater. Chem. Phys. 130 1046

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Mohtadi-Bonab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimpour-Shishevan, F., Akbulut, H. & Mohtadi-Bonab, M.A. Effect of thermal cycling on mechanical and thermal properties of basalt fibre-reinforced epoxy composites. Bull Mater Sci 43, 88 (2020). https://doi.org/10.1007/s12034-020-2059-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2059-y

Keywords

Navigation