Skip to main content
Log in

Effect of Equal Channel Angular Pressing on Mechanical and Tribological Properties of Sintered Al-Sn Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Evolution of structure of two-phase sintered Al-Sn composites during equal channel angular pressing (ECAP) without rotation of the sample between the passes (route A) was studied. The macrostructure with alternating thin Al and Sn interlayers was formed in the flow plane of the samples under the ECAP processing. It was found that the law of the changes in the parameters of the structure of the composites can be described using the geometry of ECAP. The greatest changes in the macrostructural parameters and increase in the strength of the composites were observed during the first two passes. The consequence of the thinning of aluminum interlayers is an increase in the depth of deformation of the subsurface layer and decrease in distance between tin interlayers which are sources of solid lubricant. As a result, the wear intensity of the sintered Al-Sn composites is additionally decreased under dry friction against steel if the sliding direction is perpendicular to the elongated phases interlayers. It was established that the composite containing about 40% Sn has the highest wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ECAP(A):

Equal channel angular pressing with route A

Μ :

Friction coefficient

Ih:

Wear intensity

V sl :

Sliding velocity

P :

Pressure

f fr :

Specific friction force

L :

Sliding distance

N :

Number of ECAP(A) passes

References

  1. S.Y. Tarasov, V.E. Rubtsov, and E.A. Kolubaev, A Proposed Diffusion-Controlled Wear Mechanism of Alloy Steel Friction Stir Welding (FSW) Tools Used on an Aluminum Alloy, Wear, 2014, 318, p 130–134. https://doi.org/10.1016/j.wear.2014.06.014

    Article  CAS  Google Scholar 

  2. E. Huttunen-Saarivirta, L. Kilpi, T.J. Hakala, J. Metsajoki, and H. Ronkainen, Insights into the Behaviour of Tool Steel-Aluminium Alloy Tribopair at Different Temperatures, Tribol. Int., 2018, 119, p 567–584. https://doi.org/10.1016/j.triboint.2017.11.041

    Article  CAS  Google Scholar 

  3. J. Jerina and M. Kalin, Initiation and Evolution of the Aluminium-Alloy Transfer on Hot-Work Tool Steel at Temperatures from 20 °C to 500 °C, Wear, 2014, 319, p 234–244. https://doi.org/10.1016/j.wear.2014.07.021

    Article  CAS  Google Scholar 

  4. C.G. Figueroa, I. Ortega, V.H. Jacobo, A. Ortiz, A.E. Bravo, and R. Schouwenaars, Microstructures of Tribologically Modified Surface Layers in Two-Phase Alloys, IOP Conf. Series: Mater. Sci. Eng., 2014, 63, p 012018. https://doi.org/10.1088/1757-899X/63/1/012018

    Article  CAS  Google Scholar 

  5. E.J. Abed, Study of Solidification and Mechanical Properties of Al-Sn Casting Alloys, Asian Trans. Eng., 2012, 2(3), p 89–98

    Google Scholar 

  6. H. Tan, S. Wang, Yu Yu, J. Cheng, S. Zhu, Z. Qiao, and J. Yang, Friction and Wear Properties of Al-20Si-5Fe-2Ni-Graphite Solid-Lubricating Composite at Elevated Temperatures, Tribol. Int., 2018, 122, p 228–235. https://doi.org/10.1016/j.triboint.2018.02.037

    Article  CAS  Google Scholar 

  7. E.J. Abed, The Influence of Different Casting Method on Solidification Time and Mechanical Properties of Al-Sn Castings, Int J. Eng. & Technol. IJET-IJENS, 2011, 11(6), p 34–44

    Google Scholar 

  8. O.A. Chikova, E.V. Shishkina, and A.N. Konstantinov, Measurement of Young’s Modulus and Hardness of Al-50 wt.% Sn Alloy Phases Using Nanoindentation, Phys. Metal. Metallogr., 2013, 114(7), p 616–622. https://doi.org/10.1134/S0031918X1307003X

    Article  Google Scholar 

  9. A.R. Valizadeh, A.R. Kiani-Rashid, M.H. Avazkonandeh-Gharavol, and E.Z. Karimi, The Influence of Cooling Rate on the Microstructure and Microsegregation in Al-30Sn Binary Alloy, Metallogr. Microstruct. Anal., 2013, 2(2), p 107–112. https://doi.org/10.1007/s13632-013-0064-x

    Article  CAS  Google Scholar 

  10. K.Q. Song, Z.C. Lu, M. Zhu, R.Z. Hu, and M.Q. Zeng, A Remarkable Enhancement of Mechanical and Wear Properties by Creating a Dual-Scale Structure in an Al-Sn-Si Alloy, Surf. Coat. Technol., 2017, 325, p 682–688. https://doi.org/10.1016/j.surfcoat.2017.07.030

    Article  CAS  Google Scholar 

  11. X. Liu, M.Q. Zeng, Y. Ma, and M. Zhu, Promoting the High Load-Carrying Capability of Al-20 wt.% Sn Bearing Alloys Through Creating Nanocomposite Structure by Mechanical Alloying, Wear, 2012, 294–295, p 387–394. https://doi.org/10.1016/j.wear.2012.07.021

    Article  CAS  Google Scholar 

  12. N.M. Rusin, A.L. Skorentsev, and E.A. Kolubaev, Structure and Tribotechnical Properties of Al-Sn Alloys Prepared by the Method of Liquid-Phase Sintering, Adv. Mater. Res., 2014, 1040, p 166–170. https://doi.org/10.4028/www.scientific.net/AMR.1040.166

    Article  CAS  Google Scholar 

  13. A. Nassar, A.S. Taha, A. Labeeb, and E.S. Gouda, Structure and Properties of the Al-Sn-Cu Bearing Alloy Under Different Cold Rolling Conditions, J. Mater. Sci. Eng. B, 2015, 5(7–8), p 298–304. https://doi.org/10.17265/2161-6221/2015.7-8.007

    Article  Google Scholar 

  14. N.I. Noskova, A.G. Korshunov, and A.V. Korznikov, Microstructure and Tribological Properties of Al-Sn, Al-Sn-Pb, and Sn-Sb-Cu Alloys Subjected to Severe Plastic Deformation, Metal. Sci. Heat Treat., 2008, 50(11–12), p 593–599. https://doi.org/10.1007/s11041-009-9104-1

    Article  CAS  Google Scholar 

  15. M.R. Tripathy, B.V. Manoj Kumar, B. Basu, R.K. Dube, and S.C. Koria, Tribological Behavior of Steel Backed Al-Sn Strip Prepared Via Spray Atomization—Deposition—Rolling Route, Mater. Sci. Technol., 2007, 23(1), p 15–22. https://doi.org/10.1179/174328407X154392

    Article  CAS  Google Scholar 

  16. F. Bertelli, E.S. Freitas, N. Cheung, M.A. Arenas, A. Conde, J. Damborenea, and A. Garcia, Microstructure, Tensile Properties and Wear Resistance Correlations on Directionally Solidified Al-Sn-(Cu; Si) Alloys, J. Alloy. Compd., 2017, 695, p 3621–3631. https://doi.org/10.1016/j.jallcom.2016.11.399

    Article  CAS  Google Scholar 

  17. E. Koraman, M. Baydogan, S. Sayilgan, and A. Kalkanli, Dry Sliding Wear Behavior of Al-Fe-Si-V Alloys at Elevated Temperatures, Wear, 2015, 322–323, p 101–107. https://doi.org/10.1016/j.wear.2014.10.016

    Article  CAS  Google Scholar 

  18. S.P. Divya, M. Nagaraj, M. Kesavamoorthy, S.A. Srinivasan, and B. Ravisankar, Investigation on the Effect of ECAP Routes on the Wear Behavior of AA2014, Trans. Indian Inst. Metal., 2018, 71(1), p 67–77. https://doi.org/10.1007/s12666-017-1141-7

    Article  CAS  Google Scholar 

  19. S.E. Hernandez-Martinez, J.J. Cruz-Rivera, C.G. Garay-Reyes, and J.L. Hernandez-Rivera, Experimental and Numerical Analyses of the Consolidation Process of AA 7075-2wt.% ZrO2 Powders by Equal Channel Angular Pressing, J. Mater. Eng. Perf., 2019, 28(1), p 154–161. https://doi.org/10.1007/s11665-018-3779-7

    Article  CAS  Google Scholar 

  20. N.M. Rusin, Effect of ECAP Routes on the Specific Features of the “End Effect”, Phys. Metal. Metallogr., 2006, 102(2), p 226–232. https://doi.org/10.1134/S0031918X06080151

    Article  Google Scholar 

  21. V.M. Segal, Materials Processing by Simple Shear, Mater. Sci. Eng., A, 1995, 197(2), p 157–164. https://doi.org/10.1016/0921-5093(95)09705-8

    Article  Google Scholar 

  22. K. Xu, K. Wongpreedee, and A.M. Russell, Microstructure and Strength of a Deformation Processed Al-20%Sn In Situ Composite, J. Mater. Sci., 2002, 37(24), p 5209–5214. https://doi.org/10.1023/A:1021092001147

    Article  CAS  Google Scholar 

  23. N.M. Rusin, A.L. Skorentsev, and I.P. Mishin, Evolution of Structure and Properties of Al-Sn Composites Under Deformation, Inorg. Mater. Appl. Res., 2015, 6(5), p 427–437. https://doi.org/10.1134/S2075113315050160

    Article  Google Scholar 

  24. J.X. Lu, X.Y. Wu, Z.Z. Wu, Z.Y. Liu, D.J. Guo, Y. Lou, and S.C. Ruan, Microstructure and Mechanical Properties of Ultrafine-Grained Al-6061 Prepared Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing, J. Mater. Eng. Perf., 2017, 26(10), p 5107–5117. https://doi.org/10.1007/s11665-017-2946-6

    Article  CAS  Google Scholar 

  25. T. Rameshkumar and I. Rajendran, Mechanical and Tribological Properties on Al-Sn-Si Alloy-Based Plan Bearing Material, Tribol. Trans., 2013, 56(2), p 268–274. https://doi.org/10.1080/10402004.2012.743057

    Article  CAS  Google Scholar 

  26. O.O. Stolyarova, T.I. Muravyeva, D.L. Zagorskiy, and M.M. Gubenko, Investigation of the Surface of Antifriction Al-Cu-Si-Sn-Pb Aluminum Alloys, J. Surf. Investig., 2017, 11(4), p 832–839. https://doi.org/10.1134/S1027451017040292

    Article  CAS  Google Scholar 

  27. N.M. Rusin, A.L. Skorentsev, and E.A. Kolubaev, Dry Friction of Pure Aluminum Against Steel, J. Frict. Wear, 2016, 37(1), p 86–93. https://doi.org/10.3103/S1068366616010141

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out in the framework of the Fundamental Research Program of the Russian Academy of Sciences for 2017-2020 (Program No. III.23.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Skorentsev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusin, N.M., Skorentsev, A.L. & Kolubaev, E.A. Effect of Equal Channel Angular Pressing on Mechanical and Tribological Properties of Sintered Al-Sn Composites. J. of Materi Eng and Perform 29, 1955–1963 (2020). https://doi.org/10.1007/s11665-020-04704-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04704-1

Keywords

Navigation