Skip to main content
Log in

Effect of the Final Rolling Temperature on the Precipitation Behavior and Toughening Mechanism of Nanoparticles in Ferritic Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

We have analyzed the effect of the final rolling temperature on the morphology, mechanical properties, carbide nanoparticle size, and dislocation density of Ti-Mo ferritic steel. The microstructure was mainly composed of equiaxed ferrite, ultrafine ferrite, and polygonal deformed ferrite, whose three proportions were affected significantly by the final rolling temperature. The change trend of the mechanical strength was in line with the dislocation density under different finishing rolling temperatures, whereas the ferrite grain size change trend was the opposite. There were various types of nanoparticle precipitation in the test steels: interphase precipitation, dispersion, dislocation precipitation, and deformation-induced precipitation. The optimum mechanical properties were obtained at a final rolling temperature of 900 °C. Quantitative analysis showed that the effect of the final rolling temperature on the yield strength was mainly because of dislocation and precipitation strengthening. The toughening mechanism is attributed to the fine grain strengthening of nanoparticles in austenite stage and the precipitation strengthening of ferrite stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Rahnama, S. Clark, and S. Sridhar, Machine Learning for Predicting Occurrence of Interphase Precipitation in HSLA Steels, Comput. Mater. Sci., 2018, 154, p 169–177

    Article  CAS  Google Scholar 

  2. J.B. Seol, S.H. Na, B. Gault, J.E. Kim, J.C. Han, C.G. Park, and D. Raabe, Core-Shell Nanoparticle Arrays Double the Strength of Steel, Sci. Rep., 2017, 7, p 42547

    Article  CAS  Google Scholar 

  3. S. Mukherjee, I. Timokhina, C. Zhu, S.P. Ringer, and P.D. Hodgson, Clustering and Precipitation Processes in a Ferritic Titanium-Molybdenum Microalloyed Steel, J. Alloys Compd., 2017, 690, p 621–632

    Article  CAS  Google Scholar 

  4. S. Clark, V. Janik, A. Rijkenberg, and S. Sridhar, Analysis of the Extent of Interphase Precipitation in V-HSLA Steels Through in situ Characterization of the γ/α Transformation, Mater. Charact., 2016, 115, p 83–89

    Article  CAS  Google Scholar 

  5. C. Chih-Yuan, C. Shih-Fan, C. Chien-Chon, and Y. Jer-Ren, Control of Precipitation Morphology in the Novel HSLA Steel, Mater. Sci. Eng. A, 2015, 634, p 123–133

    Article  Google Scholar 

  6. H. Yao, Z. Ai-min, W. Xiao-pei, W. Xuming, Y. Jingbo, H. Junke, and F. Yang, A High-Strength High-Ductility Ti- and Mo-Bearing Ferritic Steel, Metal. Mater. Trans. A, 2016, 1(47), p 1–11

    Google Scholar 

  7. Y. Funakawa, K. Seto, and H. Nakamichi, Strengthening of Ferritic Steel by Interface Precipitated Carbides in Rows, Mater. Sci. Forum, 2010, 638-642, p 3218–3223

    Article  CAS  Google Scholar 

  8. Y. Funakawa and K. Seto, Coarsening Behavior of Nanometer-Sized Carbides in Hot-Rolled High Strength Sheet Steel, Mater. Sci. Forum, 2007, 539-543, p 4813–4818

    Article  CAS  Google Scholar 

  9. Z. Wang, H. Zhang, C. Guo, W. Liu, Z. Yang, X. Sun, Z. Zhang, and F. Jiang, Effect of Molybdenum Addition on the Precipitation of Carbides in the Austenite Matrix of Titanium Micro-Alloyed Steels, J. Mater. Sci., 2016, 10(51), p 4996–5007

    Article  Google Scholar 

  10. W.B. Lee, S.-G. Hong, C.-G. Park, and S.-H. Park, Carbide Precipitation and High-Temperature Strength of Hot-Rolled High-Strength, Low-Alloy Steels Containing Nb and Mo, Metall Mate Trans. A, 2002, 6(33), p 1689

    Article  Google Scholar 

  11. Y. Funakawa, Mechanical Properties of Ultra Fine Particle Dispersion Strengthened Ferritic Steel, Mater. Sci. Forum, 2012, 706-709, p 2096–2100

    Article  CAS  Google Scholar 

  12. M.Y. Chen, M. Gouné, M. Verdier, Y. BréchetJ, and R. Yang, Interphase Precipitation in Vanadium-Alloyed Steels: Strengthening Contribution and Morphological Variability with Austenite to Ferrite Transformation, Acta Mater., 2014, 64, p 78–92

    Article  CAS  Google Scholar 

  13. C.Y. Chen, C.C. Chen, and J.R. Yang, Microstructure Characterization of Nanometer Carbides Heterogeneous Precipitation in Ti-Nb and Ti-Nb-Mo Steel, Mater. Charact., 2014, 11(88), p 69–79

    Article  CAS  Google Scholar 

  14. H.-W. Yen, Po-Yu Chen, C.-Y. Huang, and J.-R. Yang, Interphase Precipitation of Nanometer-Sized Carbides in a Titanium-Molybdenum-Bearing Low-Carbon Steel, Acta Mater., 2011, 16(59), p 6264–6274

    Article  Google Scholar 

  15. Q.L. Yong, Secondary Phases in Steels, Metallurgical Industry Press, Beijing, 2006

    Google Scholar 

  16. R. Okamoto and J. Ågren, A Model for Interphase Precipitation Based on Finite Interface Solute Drag Theory, Acta Mater., 2010, 14(58), p 4791–4803

    Article  Google Scholar 

  17. H. Yao, Z. Aimin, C. Yongfeng, W. Xiaopei, Y. Jingbo, and L. Huaqing, Interphase Precipitation Behavior of Nano Sized Carbides in Low Carbon Steel, J. Eng. Sci., 2015, 37(07), p 896–904

    Google Scholar 

  18. W. Xiaoping, Z. Aimin, Z. Zhengzhi, H. Yao, H. Jianguo, and Z. Fuqing, Interphase Precipitation Characteristics of Nano Sized Carbide in Low Carbon Ferritic Steel, J. Mater. Heat Treat., 2014, 08, p 69–73

    Google Scholar 

  19. W. Xiao-pei, Z. Ai-min, Z. Zheng-zhi, H. Yao, L. Liang, and H. Qing, Mechanical Properties and Characteristics of Nanometer-Sized Precipitates in hot-Rolled Low-Carbon Ferritic Steel, Int. J. Miner. Metal. Mater., 2014, 21(3), p 266–272

    Article  Google Scholar 

  20. A. Saxena, V. Kumar, and R. Datta, Influence of Cooling Rate on Transformation Behavior of 0.15% V Microalloyed Steel, J. Mater. Eng. Perform., 2011, 8(20), p 1481–1483

    Article  Google Scholar 

  21. X. Yang, W. Zhang, M. Sun, H. Yi, and Z. Liu, The Blocking Effects of Interphase Precipitation on Dislocations Movement in Ti-Bearing Micro-Alloyed Steels, Mater. Lett., 2015, 139, p 177–181

    Article  Google Scholar 

  22. Y. Kobayashi, J. Takahashi, and K. Kawakami, Experimental Evaluation of the Particle Size Dependence of the Dislocation–Particle Interaction Force in TiC-Precipitation-Strengthened Steel, Scr. Mater., 2012, 10(67), p 854–857

    Article  Google Scholar 

  23. C. Hin, Y. Bréchet, P. Maugis, and F. Soisson, Kinetics of Heterogeneous Dislocation Precipitation of NbC in Alpha-Iron, Acta Mater., 2008, 19(56), p 5535–5543

    Article  Google Scholar 

  24. Z. Wang, X. Mao, Z. Yang, X. Sun, Q. Yong, Z. Li, and Y. Weng, Strain-Induced Precipitation in a Ti Micro-Alloyed HSLA Steel, Mater. Sci. Eng. A, 2011, 1(529), p 459–467

    Article  Google Scholar 

  25. Y. Jiu Kun, Failure Analysis and Improved Design of Turbine Outlet Temperature Probe for Gas Turbine. Aeroengine (2011). in Chinese

  26. H.Y. Li and X.J. Jin, Determination of Dislocation Density in Nanostructured Bainitic Steels, J. Shanghai Jiaotong Univ., 2010, 5(44), p 613–615

    Google Scholar 

  27. F.B. Pickering, Physical Metallurgy and the Design of Steels, Vol 63, Applied Science Publishers Ltd., London, 1978

    Google Scholar 

  28. R. Wang, C.I. Garcia, M. Hua, K. Cho, H. Zhang, and A.J. Deardo, Microstructure and Precipitation Behavior of Nb, Ti Complex Microalloyed Steel Produced by Compact Strip Processing, ISIJ Int., 2006, 9(46), p 1345–1353

    Article  Google Scholar 

  29. J. Cao, Q. Yong, Q. Liu et al., Precipitation of MC Phase and Precipitation Strengthening in Hot Rolled Nb-Mo and Nb-Ti Steels, J. Mater. Sci., 2007, 42(24), p 10080–10084

    Article  CAS  Google Scholar 

  30. G. Jha, S. Das, A. Lodh, and A. Haldar, Development of Hot Rolled Steel Sheet with 600 MPa UTS for Automotive Wheel Application, Mater. Sci. Eng. A, 2012, 552, p 457–463

    Article  CAS  Google Scholar 

  31. G. Jha, S. Das, S. Sinha, A. Lodh, and A. Haldar, Design and Development of Precipitate Strengthened Advanced High Strength Steel for Automotisve Application, Mater. Sci. Eng. A, 2013, 561, p 394–402

    Article  CAS  Google Scholar 

  32. K. Takeda, N. Nakada, T. Tsuchiyama, and S. Takaki, Effect of Interstitial Elements on Hall-Petch Coefficient of Ferritic Iron, ISIJ Int., 2008, 8(48), p 1122–1125

    Article  Google Scholar 

  33. H. Yao, Z. Aimin, Z. Zhengzhi, G. Xutao, and W. Xiaopei, Calculation Model of Nb-V Precipitation in Transformation Induced Plastic Steel, J. Mater. Heat Treat., 2013, S2(Supplement), p 233–238

    Google Scholar 

  34. D. Dulieu, I. Mcivor, and T. Gladman, Structure/Property Relationships in High-Strength Micro-Alloyed Steels (1977)

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (No. 51601174) for financial support. We thank Adam Brotchie, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Han, J., Liu, W. et al. Effect of the Final Rolling Temperature on the Precipitation Behavior and Toughening Mechanism of Nanoparticles in Ferritic Steel. J. of Materi Eng and Perform 29, 1724–1731 (2020). https://doi.org/10.1007/s11665-020-04688-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04688-y

Keywords

Navigation