Skip to main content
Log in

Investigation on Production Parameters of Steel Foam Manufactured Through Powder Metallurgical Space Holder Technique

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, open-cell steel foams containing 0.6 wt% carbon and 2 wt% phosphorous have been manufactured through powder metallurgy route using urea granules as leachable space holder. Influences of applied pressure (100, 150, and 200 MPa), sintering temperature (1050, 1100, and 1150 °C), and sintering time (40, 50, and 60 min) on size and sphericity of the cells, pores specifications, porosity percentage, thickness and microstructure of the cells walls, and mechanical properties of the steel foam specimens were investigated. The microstructures of the cells walls were evaluated using optical microscopy and scanning electron microscopy equipped image processing software. To study the mechanical properties, compressive tests were conducted on the steel foam specimens. The averages of cells diameter, sphericity of cells, and thickness of cells walls were measured to be 0.78 mm, 0.842, and 183 µm, respectively. When the production parameters increase, the mean diameter of the pores decreases and the mean sphericity of the pores increases. Increasing the applied pressure, sintering temperature, and sintering time reduces, individually, the porosity percentage from 79.32 to 73.61%, 77.01 to 75.81%, and 77.81 to 75.12%, respectively. The microstructure of the cells walls consists of ferrite, pearlite, and iron-phosphorous phase. Iron-phosphorous phase formed at boundaries of agglomerated iron particles improves bonding, due to liquid phase sintering. Elastic region, long saw-toothed plateau region, and fracture point are observed in compressive stress versus strain curves. Increasing the applied pressure, sintering temperature, and sintering time enhances the plateau stress and absorb energy of the steel foams.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.F. Ashby, A.G. Evans, N.A. Fleck, L.G. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal Foams: A Design Guide, 1st edn. (Butterworth-Heinemann, Massachusetts, 2000), pp. 26–122

    Google Scholar 

  2. H.P. Degischer, B. Kriszt, Handbook of Cellular Metals, Production, Processing and Applications, 1st edn. (Wiley-VCH/Verlag GmbH, Weinheim, 2002), pp. 12–78

    Google Scholar 

  3. J. Banhart, Prog. Mater. Sci. 46, 559 (2001)

    CAS  Google Scholar 

  4. Y. Bienvenu, Comptes. Rendus. Phys. 15(8–9), 719 (2014)

    CAS  Google Scholar 

  5. H. Utsunomiya, R. Matsumoto, Procedia Mater. Sci. 4, 245 (2014)

    CAS  Google Scholar 

  6. C. Yang, S. Kyriakides, Int. J. Solids. Struct. 159, 239 (2019)

    CAS  Google Scholar 

  7. B. Katona, A. Szlancsik, T. Tabi, I.N. Orbulov, Mater. Sci. Eng. A 739, 140 (2019)

    CAS  Google Scholar 

  8. T.M. Jeng, S.C. Tzeng, T.C. Liu, Int. J. Heat. Mass. Transf. 51, 1205 (2008)

    CAS  Google Scholar 

  9. D. Guan, J.H. Wu, J.L. Wu, J. Li, W. Zhao, Appl. Acoust. 87, 103 (2015)

    Google Scholar 

  10. Y. Huang, M. Luo, Z. Xu, D. Zhang, L. Li, Sep. Purif. Technol. 211, 269 (2019)

    CAS  Google Scholar 

  11. X. Liu, W. Zhou, Y. Lin, L. Chen, X. Chu, T. Zheng, S. Wan, J. Lin, Appl. Energy 246, 24 (2019)

    CAS  Google Scholar 

  12. G.F. Yang, S.K. Joo, Electrochim. Acta. 170, 263 (2015)

    CAS  Google Scholar 

  13. J. Banhart, Production of Metal Foams: Handbook of Comprehensive Composite Materials II, 1st edn. (Academic Press, Oxford, 2018), pp. 10–19

    Google Scholar 

  14. S. Kim, C.W. Lee, Proc. Mat. Sci. 4, 305 (2014)

    Google Scholar 

  15. B.H. Smith, S. Szyniszewski, J.F. Hajjar, B.W. Schafer, S.R. Arwade, J. Constr. Steel. Res. 71, 1 (2012)

    Google Scholar 

  16. C. Park, S.R. Nutt, Mater. Sci. Eng. A 288, 111 (2000)

    Google Scholar 

  17. C. Park, S.R. Nutt, Mater. Sci. Eng. A 297, 62 (2001)

    Google Scholar 

  18. H. Sazegaran, A.R. Kiani-Rashid, J.V. Khaki, Int. J. Min. Met. Mater. 23(4), 434 (2016)

    CAS  Google Scholar 

  19. H. Sazegaran, A.R. Kiani-Rashid, J.V. Khaki, Int. J. Min. Met. Mater. 23(6), 676 (2016)

    CAS  Google Scholar 

  20. M. Mirzaei, M.H. Paydar, Mater. Des. 121, 442 (2017)

    CAS  Google Scholar 

  21. N. Bekoz, E. Oktay, Mater. Des. 53, 482 (2014)

    CAS  Google Scholar 

  22. N. Bekoz, E. Oktay, Mater. Sci. Eng. A 576, 82 (2013)

    CAS  Google Scholar 

  23. N. Bekoz, E. Oktay, J. Mater. Process. Technol. 212, 2109 (2012)

    CAS  Google Scholar 

  24. M.H. Golabgir, R. Ebrahimi-Kahrizsangi, O. Torabi, H. Tajizadegan, A. Jamshidi, Adv. Powder. Technol. 25, 960 (2014)

    CAS  Google Scholar 

  25. Z.W. Xu, C.C. Jia, C.J. Kuang, X.H. Qu, Int. J. Miner. Metall. Mater. 17(4), 423 (2010)

    CAS  Google Scholar 

  26. L. Vendra, B. Neville, A. Rabiei, Mater. Sci. Eng. A 517, 146 (2009)

    Google Scholar 

  27. S.V. Raj, L.J. Ghosn, B.A. Lerch, M. Hebsur, L.M. Cosgriff, J. Fedor, Mater. Sci. Eng. A 456(1–2), 305 (2007)

    Google Scholar 

  28. A. Hassani, A. Habibolahzadeh, H. Bafti, Mater. Des. 40, 510 (2012)

    CAS  Google Scholar 

  29. D. Tian, Y. Pang, L. Yu, L. Sun, Int. J. Min. Met. Mater. 23(7), 793 (2016)

    CAS  Google Scholar 

  30. M. Sharma, G.K. Gupta, O.P. Modi, B.K. Prasad, A.K. Gupta, Mater. Lett. 65, 3199 (2011)

    CAS  Google Scholar 

  31. B. Jiang, N. Zhao, C. Shi, J. Li, Scr. Mater. 53, 781 (2005)

    CAS  Google Scholar 

  32. H. Sazegaran, M. Hojati, Int. J. Min. Met. Mater. 26(5), 588 (2019)

    CAS  Google Scholar 

  33. H. Sazegaran, A. Feizi, M. Hojati, Trans. Indian. Inst. Met. 72(10), 2819 (2019)

    CAS  Google Scholar 

  34. A. Noorsyakirah, M. Mazlan, O.M. Afian, M.A. Aswad, S.M. Jabir, M.Z. Nurazilah, N.H.M. Afiq, M. Bakar, A.J.M. Nizam, O.A. Zahid, M.H.M. Bakri, Procedia Chem. 19, 552 (2016)

    CAS  Google Scholar 

  35. G. Jia, Y. Hou, C. Chen, J. Niu, H. Zhang, H. Huang, M. Xiong, M. Yuan, Mater. Des. 140, 106 (2018)

    CAS  Google Scholar 

  36. B. Xie, Y.Z. Fan, T.Z. Mu, B. Deng, Mater. Sci. Eng. A 708, 419 (2017)

    CAS  Google Scholar 

  37. N. Takata, K. Uematsu, M. Kobashi, Mater. Sci. Eng. A 697, 66 (2017)

    CAS  Google Scholar 

  38. E.E. Asik, S. Bor, Mater. Sci. Eng. A 621, 157 (2015)

    CAS  Google Scholar 

  39. T. Shimizu, K. Matsuzaki, H. Nagai, N. Kanetake, Mater. Sci. Eng. A 558, 343 (2012)

    CAS  Google Scholar 

  40. J. Kadkhodapour, H. Montazerian, M. Samadi, S. Schmauder, A.A. Mehrizi, Mater. Des. 83, 352 (2015)

    CAS  Google Scholar 

  41. I. Mutlu, E. Oktay, Mater. Des. 44, 274 (2013)

    CAS  Google Scholar 

  42. D.P. Mondal, H. Jain, S. Das, A.K. Jha, Mater. Des. 88, 430 (2015)

    CAS  Google Scholar 

  43. H. Bafti, A. Habibolahzadeh, Mater. Des. 31, 4122 (2010)

    CAS  Google Scholar 

  44. M. Mirzaei, M.H. Paydar, J. Mater. Eng. Perform. 28(1), 221 (2019)

    CAS  Google Scholar 

  45. G.L. Fridman, Metallurgist 13(1), 59 (1969)

    Google Scholar 

  46. J. Capek, D. Vojtech, Mater. Sci. Eng. C 43, 494 (2014)

    CAS  Google Scholar 

  47. G.A. Baglyuk, L.A. Sosnovskii, V.I. Volfman, Powder. Metal. Met. Ceram. 50, 189 (2011)

    CAS  Google Scholar 

  48. S. Narayan, A. Rajeshkannan, Int. J. Adv. Manuf. Technol. 64(1–4), 105 (2013)

    Google Scholar 

  49. H. Jain, G. Gupta, R. Kumar, D.P. Mondal, Mater. Chem. Phys. 223, 737 (2019)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Sazegaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazegaran, H. Investigation on Production Parameters of Steel Foam Manufactured Through Powder Metallurgical Space Holder Technique. Met. Mater. Int. 27, 3371–3384 (2021). https://doi.org/10.1007/s12540-020-00659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00659-z

Keywords

Navigation