Skip to main content

Advertisement

Log in

Assessment of recombinant tissue plasminogen activator (rtPA) toxicity in cultured neural cells and subsequent treatment with poly-arginine peptide R18D

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Thrombolytic therapy with recombinant tissue plasminogen activator (rtPA) in ischaemic stroke has been associated with neurotoxicity, blood brain barrier (BBB) disruption and intra-cerebral hemorrhage. To examine rtPA cellular toxicity we investigated the effects of rtPA on cell viability in neuronal, astrocyte and brain endothelial cell (bEnd.3) cultures with and without prior exposure to oxygen–glucose deprivation (OGD). In addition, the neuroprotective peptide poly-arginine-18 (R18D; 18-mer of d-arginine) was examined for its ability to reduce rtPA toxicity. Studies demonstrated that a 4- or 24-h exposure of rtPA was toxic, affecting neuronal cell viability at ≥ 2 µM, and astrocyte and bEnd.3 cells viability at ≥ 5 μM. In addition, a 4-h exposure to rtPA after a period of OGD (OGD/rtPA) exacerbated toxicity, affecting neuronal, astrocyte and bEnd.3 cell viability at rtPA concentrations as low as 0.1 µM. Treatment of cells with low concentrations of R18D (0.5 and 1 µM) reduced the toxic effects of rtPA and OGD/rtPA, while on some occasions a higher 2 µM R18D concentrations exacerbated neuronal and bEnd.3 cell toxicity in OGD/rtPA exposed cultures. In exploratory studies we also demonstrated that OGD activates matrix metalloproteinase-9 (MMP-9) release into the supernatant of astrocyte and bEnd.3 cell cultures, but not neuronal cultures, and that OGD/rtPA increases MMP-9 activation. Furthermore, R18D decreased MMP-9 activation in OGD/rtPA treated astrocyte and bEnd.3 cell cultures. In summary, the findings show that rtPA can be toxic to neural cells and that OGD exacerbates toxicity, while R18D has the capacity to reduce rtPA neural cellular toxicity and reduce MMP-9 activation in astrocytes and bEnd.3. Poly-arginine-18 peptides, which are being developed as neuroprotective therapeutics for ischaemic stroke, therefore have the additional potential of reducing cytotoxic effects associated with rtPA thrombolysis in the treatment of ischaemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jovin TG, Nogueira RG, Investigators D (2018) Thrombectomy 6 to 24 hours after stroke. N Engl J Med 378(12):1161–1162. https://doi.org/10.1056/NEJMc1801530

    Article  PubMed  Google Scholar 

  2. Lees KR, Emberson J, Blackwell L, Bluhmki E, Davis SM, Donnan GA, Grotta JC, Kaste M, von Kummer R, Lansberg MG, Lindley RI, Lyden P, Murray GD, Sandercock PA, Toni D, Toyoda K, Wardlaw JM, Whiteley WN, Baigent C, Hacke W, Howard G, Stroke Thrombolysis Trialists' Collaborators G (2016) Effects of Alteplase for acute stroke on the distribution of functional outcomes: a pooled analysis of 9 trials. Stroke 47(9):2373–2379. https://doi.org/10.1161/STROKEAHA.116.013644

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rao NM, Levine SR, Gornbein JA, Saver JL (2014) Defining clinically relevant cerebral hemorrhage after thrombolytic therapy for stroke: analysis of the National Institute of Neurological Disorders and Stroke tissue-type plasminogen activator trials. Stroke 45(9):2728–2733. https://doi.org/10.1161/STROKEAHA.114.005135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chao AC, Hsu HY, Chung CP, Liu CH, Chen CH, Teng MM, Peng GS, Sheng WY, Hu HH, Taiwan Thrombolytic Therapy for Acute Ischemic Stroke Study G (2010) Outcomes of thrombolytic therapy for acute ischemic stroke in Chinese patients: the Taiwan Thrombolytic Therapy for Acute Ischemic Stroke (TTT-AIS) study. Stroke 41(5):885–890. https://doi.org/10.1161/STROKEAHA.109.575605

    Article  PubMed  Google Scholar 

  5. Ong CT, Wong YS, Wu CS, Su YH (2017) Outcome of stroke patients receiving different doses of recombinant tissue plasminogen activator. Drug Des Devel Ther 11:1559–1566. https://doi.org/10.2147/DDDT.S133759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yepes M, Roussel BD, Ali C, Vivien D (2009) Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci 32(1):48–55. https://doi.org/10.1016/j.tins.2008.09.006

    Article  CAS  PubMed  Google Scholar 

  7. Seners P, Turc G, Oppenheim C, Baron JC (2015) Incidence, causes and predictors of neurological deterioration occurring within 24 h following acute ischaemic stroke: a systematic review with pathophysiological implications. J Neurol Neurosurg Psychiatry 86(1):87–94. https://doi.org/10.1136/jnnp-2014-308327

    Article  PubMed  Google Scholar 

  8. Golab P, Boguszewska-Czubara A, Kielbus M, Kurzepa J (2014) The rtPA increases MMP-9 activity in serum during ischaemic stroke. Neurol Neurochir Pol 48(5):309–314. https://doi.org/10.1016/j.pjnns.2014.07.012

    Article  PubMed  Google Scholar 

  9. Shigemori Y, Katayama Y, Mori T, Maeda T, Kawamata T (2006) Matrix metalloproteinase-9 is associated with blood-brain barrier opening and brain edema formation after cortical contusion in rats. Acta Neurochir Suppl 96:130–133

    Article  CAS  Google Scholar 

  10. Yepes M (2015) Tissue-type plasminogen activator is a neuroprotectant in the central nervous system. Front Cell Neurosci 9:304. https://doi.org/10.3389/fncel.2015.00304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu F, Echeverry R, Wu J, An J, Haile WB, Cooper DS, Catano M, Yepes M (2013) Tissue-type plasminogen activator protects neurons from excitotoxin-induced cell death via activation of the ERK1/2-CREB-ATF3 signaling pathway. Mol Cell Neurosci 52:9–19. https://doi.org/10.1016/j.mcn.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  12. Gotanda Y, Wei FY, Harada H, Ohta K, Nakamura KI, Tomizawa K, Ushijima K (2014) Efficient transduction of 11 poly-arginine peptide in an ischemic lesion of mouse brain. J Stroke Cerebrovasc Dis 23(8):2023–2030. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.02.027

    Article  PubMed  Google Scholar 

  13. Stalmans S, Bracke N, Wynendaele E, Gevaert B, Peremans K, Burvenich C, Polis I, De Spiegeleer B (2015) Cell-penetrating peptides selectively cross the blood-brain barrier in Vvvo. PLoS ONE 10(10):e0139652. https://doi.org/10.1371/journal.pone.0139652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meloni BP, Milani D, Edwards AB, Anderton RS, O’Hare Doig RL, Fitzgerald M, Palmer TN, Knuckey NW (2015) Neuroprotective peptides fused to arginine-rich cell penetrating peptides: neuroprotective mechanism likely mediated by peptide endocytic properties. Pharmacol Ther 153:36–54. https://doi.org/10.1016/j.pharmthera.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  15. Marshall J, Wong KY, Rupasinghe CN, Tiwari R, Zhao X, Berberoglu ED, Sinkler C, Liu J, Lee I, Parang K, Spaller MR, Huttemann M, Goebel DJ (2015) Inhibition of N-methyl-D-aspartate-induced retinal neuronal death by polyarginine peptides is linked to the attenuation of stress-induced hyperpolarization of the inner mitochondrial membrane potential. J Biol Chem 290(36):22030–22048. https://doi.org/10.1074/jbc.M115.662791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Horton KL, Stewart KM, Fonseca SB, Guo Q, Kelley SO (2008) Mitochondria-penetrating peptides. Chem Biol 15(4):375–382. https://doi.org/10.1016/j.chembiol.2008.03.015

    Article  CAS  PubMed  Google Scholar 

  17. Rigobello MP, Barzon E, Marin O, Bindoli A (1995) Effect of polycation peptides on mitochondrial permeability transition. Biochem Biophys Res Commun 217(1):144–149. https://doi.org/10.1006/bbrc.1995.2756

    Article  CAS  PubMed  Google Scholar 

  18. Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279(33):34682–34690. https://doi.org/10.1074/jbc.M402999200

    Article  CAS  PubMed  Google Scholar 

  19. Kown MH, Lijkwan MA, Jahncke CL, Murata S, Rothbard JB, Robbins RC (2003) L-Arginine polymers enhance coronary flow and reduce oxidative stress following cardiac transplantation in rats. J Thorac Cardiovasc Surg 126(4):1065–1070. https://doi.org/10.1016/S0022

    Article  CAS  PubMed  Google Scholar 

  20. Aluganti Narasimhulu C, Selvarajan K, Brown M, Parthasarathy S (2014) Cationic peptides neutralize Ox-LDL, prevent its uptake by macrophages, and attenuate inflammatory response. Atherosclerosis 236(1):133–141. https://doi.org/10.1016/j.atherosclerosis.2014.06.020

    Article  CAS  PubMed  Google Scholar 

  21. Gaczynska M, Osmulski PA, Gao Y, Post MJ, Simons M (2003) Proline- and arginine-rich peptides constitute a novel class of allosteric inhibitors of proteasome activity. Biochemistry 42(29):8663–8670. https://doi.org/10.1021/bi034784f

    Article  CAS  PubMed  Google Scholar 

  22. Kloss A, Meiners S, Ludwig A, Dahlmann B (2010) Multiple cardiac proteasome subtypes differ in their susceptibility to proteasome inhibitors. Cardiovasc Res 85(2):367–375. https://doi.org/10.1093/cvr/cvp217

    Article  CAS  PubMed  Google Scholar 

  23. Cameron A, Appel J, Houghten RA, Lindberg I (2000) Polyarginines are potent furin inhibitors. J Biol Chem 275(47):36741–36749. https://doi.org/10.1074/jbc.M003848200

    Article  CAS  PubMed  Google Scholar 

  24. Fugere M, Appel J, Houghten RA, Lindberg I, Day R (2007) Short polybasic peptide sequences are potent inhibitors of PC5/6 and PC7: use of positional scanning-synthetic peptide combinatorial libraries as a tool for the optimization of inhibitory sequences. Mol Pharmacol 71(1):323–332. https://doi.org/10.1124/mol.106.027946

    Article  CAS  PubMed  Google Scholar 

  25. Rosenberg GA (2012) Neurological diseases in relation to the blood-brain barrier. J Cereb Blood Flow Metab 32(7):1139–1151. https://doi.org/10.1038/jcbfm.2011.197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Watanabe Y, Hirakawa K, Haruyama T, Akaike T (2001) Direct production of an activated matrix metalloproteinase-9 (gelatinase B) from mammalian cells. FEBS Lett 502(1–2):63–67

    Article  CAS  Google Scholar 

  27. Zhu S, Zhou Y, Wang L, Zhang J, Wu H, Xiong J, Zhang J, Tian Y, Wang C, Wu H (2011) Transcriptional upregulation of MT2-MMP in response to hypoxia is promoted by HIF-1alpha in cancer cells. Mol Carcinog 50(10):770–780. https://doi.org/10.1002/mc.20678

    Article  CAS  PubMed  Google Scholar 

  28. Meloni BP, Majda BT, Knuckey NW (2001) Establishment of neuronal in vitro models of ischemia in 96-well microtiter strip-plates that result in acute, progressive and delayed neuronal death. Neuroscience 108(1):17–26

    Article  CAS  Google Scholar 

  29. Edwards AB, Anderton RS, Knuckey NW, Meloni BP (2018) Perinatal hypoxic-ischemic encephalopathy and neuroprotective peptide therapies: a case for cationic arginine-rich peptides (CARPs). Brain Sci. https://doi.org/10.3390/brainsci8080147

    Article  PubMed  PubMed Central  Google Scholar 

  30. Baron A, Montagne A, Casse F, Launay S, Maubert E, Ali C, Vivien D (2010) NR2D-containing NMDA receptors mediate tissue plasminogen activator-promoted neuronal excitotoxicity. Cell Death Differ 17(5):860–871. https://doi.org/10.1038/cdd.2009.172

    Article  CAS  PubMed  Google Scholar 

  31. Lemarchand E, Maubert E, Haelewyn B, Ali C, Rubio M, Vivien D (2016) Stressed neurons protect themselves by a tissue-type plasminogen activator-mediated EGFR-dependent mechanism. Cell Death Differ 23(1):123–131. https://doi.org/10.1038/cdd.2015.76

    Article  CAS  PubMed  Google Scholar 

  32. Badiola N, Penas C, Minano-Molina A, Barneda-Zahonero B, Fado R, Sanchez-Opazo G, Comella JX, Sabria J, Zhu C, Blomgren K, Casas C, Rodriguez-Alvarez J (2011) Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12. Cell Death Dis 2:e149. https://doi.org/10.1038/cddis.2011.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiang X, Mu D, Manabat C, Koshy AA, Christen S, Tauber MG, Vexler ZS, Ferriero DM (2004) Differential vulnerability of immature murine neurons to oxygen-glucose deprivation. Exp Neurol 190(1):224–232. https://doi.org/10.1016/j.expneurol.2004.07.010

    Article  CAS  PubMed  Google Scholar 

  34. Shi R, Weng J, Zhao L, Li XM, Gao TM, Kong J (2012) Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther 18(3):250–260. https://doi.org/10.1111/j.1755-5949.2012.00295.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liberatore GT, Samson A, Bladin C, Schleuning WD, Medcalf RL (2003) Vampire bat salivary plasminogen activator (desmoteplase): a unique fibrinolytic enzyme that does not promote neurodegeneration. Stroke 34(2):537–543

    Article  CAS  Google Scholar 

  36. Nicole O, Docagne F, Ali C, Margaill I, Carmeliet P, MacKenzie ET, Vivien D, Buisson A (2001) The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med 7(1):59–64. https://doi.org/10.1038/83358

    Article  CAS  PubMed  Google Scholar 

  37. Reddrop C, Moldrich RX, Beart PM, Farso M, Liberatore GT, Howells DW, Petersen KU, Schleuning WD, Medcalf RL (2005) Vampire bat salivary plasminogen activator (desmoteplase) inhibits tissue-type plasminogen activator-induced potentiation of excitotoxic injury. Stroke 36(6):1241–1246. https://doi.org/10.1161/01.STR.0000166050.84056.48

    Article  CAS  PubMed  Google Scholar 

  38. Yepes M, Wu F, Torre E, Cuellar-Giraldo D, Jia D, Cheng L (2016) Tissue-type plasminogen activator induces synaptic vesicle endocytosis in cerebral cortical neurons. Neuroscience 319:69–78. https://doi.org/10.1016/j.neuroscience.2016.01.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Briens A, Bardou I, Lebas H, Miles LA, Parmer RJ, Vivien D, Docagne F (2017) Astrocytes regulate the balance between plasminogen activation and plasmin clearance via cell-surface actin. Cell Discov 3:17001. https://doi.org/10.1038/celldisc.2017.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Assmann JC, Korbelin J (1862) Schwaninger M (2016) Genetic manipulation of brain endothelial cells in vivo. Biochim Biophys Acta 3:381–394. https://doi.org/10.1016/j.bbadis.2015.10.006

    Article  CAS  Google Scholar 

  41. Sedlakova R, Shivers RR, Del Maestro RF (1999) Ultrastructure of the blood-brain barrier in the rabbit. J Submicrosc Cytol Pathol 31(1):149–161

    CAS  PubMed  Google Scholar 

  42. Stamatovic SM, Keep RF, Andjelkovic AV (2008) Brain endothelial cell-cell junctions: how to "open" the blood brain barrier. Curr Neuropharmacol 6(3):179–192. https://doi.org/10.2174/157015908785777210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vodovnik L, Miklavcic D, Sersa G (1992) Modified cell proliferation due to electrical currents. Med Biol Eng Comput 30(4):CE21–28

    Article  CAS  Google Scholar 

  44. MacDougall G, Anderton RS, Edwards AB, Knuckey NW, Meloni BP (2017) The neuroprotective peptide poly-arginine-12 (R12) reduces cell surface levels of NMDA NR2B receptor subunit in cortical neurons; Investigation into the involvement of endocytic mechanisms. J Mol Neurosci 61(2):235–246. https://doi.org/10.1007/s12031-016-0861-1

    Article  CAS  PubMed  Google Scholar 

  45. Fotin-Mleczek M, Welte S, Mader O, Duchardt F, Fischer R, Hufnagel H, Scheurich P, Brock R (2005) Cationic cell-penetrating peptides interfere with TNF signalling by induction of TNF receptor internalization. J Cell Sci 118(Pt 15):3339–3351. https://doi.org/10.1242/jcs.02460

    Article  CAS  PubMed  Google Scholar 

  46. Klein T, Bischoff R (2011) Physiology and pathophysiology of matrix metalloproteases. Amino Acids 41(2):271–290. https://doi.org/10.1007/s00726-010-0689-x

    Article  CAS  PubMed  Google Scholar 

  47. Nagase H (1997) Activation mechanisms of matrix metalloproteinases. Biol Chem 378(3–4):151–160

    CAS  PubMed  Google Scholar 

  48. Jin R, Yang G, Li G (2010) Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiol Dis 38(3):376–385. https://doi.org/10.1016/j.nbd.2010.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lakhan SE, Kirchgessner A, Tepper D, Leonard A (2013) Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front Neurol 4:32. https://doi.org/10.3389/fneur.2013.00032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Turner RJ, Sharp FR (2016) Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke. Front Cell Neurosci 10:56. https://doi.org/10.3389/fncel.2016.00056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27(4):697–709. https://doi.org/10.1038/sj.jcbfm.9600375

    Article  CAS  PubMed  Google Scholar 

  52. Ramos-Molina B, Lick AN, Nasrolahi Shirazi A, Oh D, Tiwari R, El-Sayed NS, Parang K, Lindberg I (2015) Cationic cell-penetrating peptides are potent furin inhibitors. PLoS ONE 10(6):e0130417. https://doi.org/10.1371/journal.pone.0130417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kelly PJ, Morrow JD, Ning M, Koroshetz W, Lo EH, Terry E, Milne GL, Hubbard J, Lee H, Stevenson E, Lederer M, Furie KL (2008) Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke: the Biomarker Evaluation for Antioxidant Therapies in Stroke (BEAT-Stroke) study. Stroke 39(1):100–104. https://doi.org/10.1161/STROKEAHA.107.488189

    Article  CAS  PubMed  Google Scholar 

  54. Mizoguchi H, Yamada K, Nabeshima T (2011) Matrix metalloproteinases contribute to neuronal dysfunction in animal models of drug dependence, Alzheimer's disease, and epilepsy. Biochem Res Int 2011:681385. https://doi.org/10.1155/2011/681385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Acheampong P, Ford GA (2012) Pharmacokinetics of alteplase in the treatment of ischaemic stroke. Expert Opin Drug Metab Toxicol 8(2):271–281. https://doi.org/10.1517/17425255.2012.652615

    Article  CAS  PubMed  Google Scholar 

  56. Liddle L, Reinders R, South SM, Blacker DJ, Knuckey NW, Colbourne F, Melon BP (2019) Poly-arginine-18 peptides do not exacerbate bleeding, or improve functional outcomesfollowing collagenase-induced intracerebral hemorrhage in the rat. PLoS ONE. https://doi.org/10.1371/journal.pone.0224870

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The study was funded by Research support from the Perron Institute for Neurological and Translational Science and The University of Western Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jade E. Kenna.

Ethics declarations

Conflict of interest

Bruno P. Meloni and Neville W. Knuckey are named inventors of several patent applications (Provisional Patents: 2013904197; 30/ 10/2013 and 2014902319; 17/6/2014 and PCT/ AU2014/050326; 30/10/2104) regarding the use of arginine-rich peptides as neuroprotective agents.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenna, J.E., Anderton, R.S., Knuckey, N.W. et al. Assessment of recombinant tissue plasminogen activator (rtPA) toxicity in cultured neural cells and subsequent treatment with poly-arginine peptide R18D. Neurochem Res 45, 1215–1229 (2020). https://doi.org/10.1007/s11064-020-03004-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03004-3

Keywords

Navigation