Skip to main content
Log in

High-gravity-assisted emulsification for continuous preparation of waterborne polyurethane nanodispersion with high solids content

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, we developed a continuous preparation strategy for the production of high-solidscontent waterborne polyurethane (WPU) emulsions via high-gravity-assisted emulsification in a rotating packed bed (RPB) reactor. By adjusting the experimental parameters and formula, WPU emulsions with a high solids content of 55% and a low viscosity were prepared. Preliminary applications of the high-solids-content WPU as a thermally insulating material were demonstrated. RPB emulsification is an economical and environmentally friendly production strategy because of the low energy consumption, short emulsification time, and effective devolatilization. This study demonstrated an effective method for preparation of high-solids-content WPU, moving toward commercialization and industrialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang S, Du X S, Jiang Y X, Xu J H, Zhou M, Wang H B, Cheng X, Du Z L. Synergetic enhancement of mechanical and fire-resistance performance of waterborne polyurethane by introducing two kinds of phosphorus-nitrogen flame retardant. Journal of Colloid and Interface Science, 2019, 537: 197–205

    Article  CAS  PubMed  Google Scholar 

  2. Hu J Q, Peng KM, Guo J S, Shan D Y, Kim G B, Li Q Y, Gerhard E, Zhu L, Tu W P, Lv W Z, et al. Click cross-linking-improved waterborne polymers for environment-friendly coatings and adhesives. ACS Applied Materials & Interfaces, 2016, 8(27): 17499–17510

    Article  CAS  Google Scholar 

  3. Leng J, Chen J, Wang D, Wang J X, Pu Y, Chen J F. Scalable preparation of Gd2O3: Yb3+/Er3+ upconversion nanophosphors in a high-gravity rotating packed bed reactor for transparent upconversion luminescent films. Industrial & Engineering Chemistry Research, 2017, 56(28): 7977–7983

    Article  CAS  Google Scholar 

  4. Yan Q, Dong H, Su J, Han J, Song B, Wei Q, Shi Y. A review of 3D printing technology for medical applications. Engineering, 2018, 4(5): 729–742

    Article  CAS  Google Scholar 

  5. Yang D J, Wang S Y, Zhong R S, Liu W F, Qiu X Q. Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings. Frontiers of Chemical Science & Engineering, 2018, 13(1): 59–69

    Article  CAS  Google Scholar 

  6. Chai C P, Ma Y F, Li G P, Ge Z, Ma S Y, Luo Y J. The preparation of high solid content waterborne polyurethane by special physical blending. Progress in Organic Coatings, 2018, 115: 79–85

    Article  CAS  Google Scholar 

  7. Chattopadhyay D K, Raju K V S N. Structural engineering of polyurethane coatings for high performance applications. Progress in Polymer Science, 2007, 32(3): 352–418

    Article  CAS  Google Scholar 

  8. Liang H Y, Wang SW, He H, Wang MQ, Liu L X, Lu J Y, Zhang Y, Zhang C Q. Aqueous anionic polyurethane dispersions from castor oil. Industrial Crops and Products, 2018, 122: 182–189

    Article  CAS  Google Scholar 

  9. Honarkar H, Barmar M, Barikani M. Synthesis, characterization and properties of waterborne polyurethanes based on two different ionic centers. Fibers and Polymers, 2015, 16(4): 718–725

    Article  CAS  Google Scholar 

  10. Philipp C, Eschig S. Waterborne polyurethane wood coatings based on rapeseed fatty acid methyl esters. Progress in Organic Coatings, 2012, 74(4): 705–711

    Article  CAS  Google Scholar 

  11. Feng J, Lu Q H, Tan WM, Chen K Q, Ouyang P K. The influence of the NCO/OH ratio and the 1,6-hexanediol/dimethylol propionic acid molar ratio on the properties of waterborne polyurethane dispersions based on 1,5-pentamethylene diisocyanate. Frontiers of Chemical Science and Engineering, 2019, 13(1): 80–89

    Article  CAS  Google Scholar 

  12. Kró P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in Materials Science, 2007, 52(6): 915–1015

    Article  CAS  Google Scholar 

  13. Peng S J, Jin Y, Cheng X F, Sun T B, Qi R, Fan B Z. A new method to synthesize high solid content waterborne polyurethanes by strict control of bimodal particle size distribution. Progress in Organic Coatings, 2015, 86: 1–10

    Article  CAS  Google Scholar 

  14. Zhou X, Fang C Q, Lei W Q, Du J, Huang T Y, Li Y, Cheng Y L. Various nanoparticle morphologies and surface properties of waterborne polyurethane controlled by water. Scientific Reports, 2016, 61): 6

    Article  CAS  Google Scholar 

  15. Mariz I D A, de la Cal J C, Leiza J R. Control of particle size distribution for the synthesis of small particle size high solids content latexes. Polymer, 2010, 51(18): 4044–4052

    Article  CAS  Google Scholar 

  16. Mariz I D A, Leiza J R, de la Cal J C. Competitive particle growth: A tool to control the particle size distribution for the synthesis of high solids content low viscosity latexes. Chemical Engineering Journal, 2011, 168(2): 938–946

    Article  CAS  Google Scholar 

  17. Hou L J, Ding Y T, Zhang Z L, Sun Z S, Shan Z H. Synergistic effect of anionic and nonionic monomers on the synthesis of high solid content waterborne polyurethane. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2015, 467: 46–56

    CAS  Google Scholar 

  18. Li M, Liu F, Li Y, Qiang X H. Synthesis of stable cationic waterborne polyurethane with a high solid content: Insight from simulation to experiment. RSC Advances, 2017, 7(22): 13312–13324

    Article  CAS  Google Scholar 

  19. Lee S K, Kim B K. High solid and high stability waterborne polyurethanes via ionic groups in soft segments and chain termini. Journal of Colloid and Interface Science, 2009, 336(1): 208–214

    Article  CAS  PubMed  Google Scholar 

  20. Salager J L, Forgiarini A, Marquez L, Pena A, Pizzino A, Rodriguez M P, Rondo-Gonzalez M. Using emulsion inversion in industrial processes. Advances in Colloid and Interface Science, 2004, 108: 259–272

    Article  PubMed  CAS  Google Scholar 

  21. Perazzo A, Preziosi V, Guido S. Phase inversion emulsification: Current understanding and applications. Advances in Colloid and Interface Science, 2015, 222: 581–599

    Article  CAS  PubMed  Google Scholar 

  22. Liu H, Hu T, Wang D, Shi J, Zhang J, Wang J X, Pu Y, Chen J F. Preparation of fluorescent waterborne polyurethane nanodispersion by high-gravity miniemulsion polymerization for multifunctional applications. Chemical Engineering and Processing-Process Intensification, 2019, 136: 36–43

    Article  CAS  Google Scholar 

  23. Wenzel D, Gorak A. Review and analysis of micromixing in rotating packed beds. Chemical Engineering Journal, 2018, 345: 492–506

    Article  CAS  Google Scholar 

  24. He X, Wang Z, Pu Y, Wan D, Tang R, Cui S, Wang J X, Chen J F. High-gravity-assisted scalable synthesis of zirconia nanodispersion for light emitting diodes encapsulation with enhanced light extraction efficiency. Chemical Engineering Science, 2019, 195: 1–10

    Article  CAS  Google Scholar 

  25. He X, Tang R, Pu Y, Wang J X, Wang Z, Wang D, Chen J F. Highgravity- hydrolysis approach to transparent nanozirconia/silicone encapsulation materials of light emitting diodes devices for healthy lighting. Nano Energy, 2019, 62: 1–10

    Article  CAS  Google Scholar 

  26. Wang D, Wang Z, Zhan Q, Pu Y, Wang J X, Foster N R, Dai L. Facile and scalable preparation of fluorescent carbon dots for multifunctional applications. Engineering, 2017, 3(3): 402–408

    Article  Google Scholar 

  27. Pu Y, Leng J, Wang D, Wang J X, Foster N R, Chen J F. Process intensification for scalable synthesis of ytterbium and erbium codoped sodium yttrium fluoride upconversion nanodispersions. Powder Technology, 2018, 340: 208–216

    Article  CAS  Google Scholar 

  28. Liu Y, Jiao W, Qi G. Preparation and properties of methanol-diesel oil emulsified fuel under high-gravity environment. Renewable Energy, 2011, 36(5): 1463–1468

    Article  CAS  Google Scholar 

  29. Modarres-Gheisari S M, Gavagsaz-Ghoachani R, Malaki M, Safarpour P, Zandi M. Ultrasonic nano-emulsification-a review. Ultrasonics Sonochemistry, 2019, 52: 88–105

    Article  CAS  PubMed  Google Scholar 

  30. Cui G W, Wang J P, Wang X C, Li W, Zhang X. Preparation and properties of narrowly dispersed polyurethane nanocapsules containing essential oil via phase inversion emulsification. Journal of Agricultural and Food Chemistry, 2018, 66(41): 10799–10807

    Article  CAS  PubMed  Google Scholar 

  31. Chen J F, Zhou MY, Shao L, Wang Y, Yun J, Chew N Y K, Chan H K. Feasibility of preparing nanodrugs by high-gravity reactive precipitation. International Journal of Pharmaceutics, 2004, 269(1): 267–274

    Article  CAS  PubMed  Google Scholar 

  32. Wu K, Wu H R, Dai T C, Liu X Z, Chen J F, Le Y. Controlling nucleation and fabricating nanoparticulate formulation of sorafenib using a high-gravity rotating packed bed. Industrial & Engineering Chemistry Research, 2018, 57(6): 1903–1911

    Article  CAS  Google Scholar 

  33. Kang S Y, Ji Z X, Tseng L F, Turner S A, Villanueva D A, Johnson R, Albano A, Langer R. Design and synthesis of waterborne polyurethanes. Advanced Materials, 2018, 3018): 1706237

    Google Scholar 

  34. Tan C, Lee M C, Abbaspourrad A. Facile synthesis of sustainable high internal phase emulsions by a universal and controllable route. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16657–16664

    Article  CAS  Google Scholar 

  35. Guyot A, Chu F, Schneider M, Graillat C, McKenna T F. High solid content latexes. Progress in Polymer Science, 2002, 27(8): 1573–1615

    Article  CAS  Google Scholar 

  36. Cui Y, Gong H, Wang Y, Li D, Bai H. A thermally insulating textile inspired by polar bear hair. Advanced Materials, 2018, 3014): 1706807

    Google Scholar 

  37. Wu Y J, Xiao C F, Liu H L, Huang Q L. Fabrication and characterization of novel foaming polyurethane hollow fiber membrane. Chinese Journal of Chemical Engineering, 2019, 27(4): 935–943

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2017YFB-0404302 and 2017YFB0404300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Wang or Yuan Pu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, D., Wang, JX. et al. High-gravity-assisted emulsification for continuous preparation of waterborne polyurethane nanodispersion with high solids content. Front. Chem. Sci. Eng. 14, 1087–1099 (2020). https://doi.org/10.1007/s11705-019-1895-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1895-z

Keywords

Navigation