Skip to main content
Log in

Combining extractive heterogeneous-azeotropic distillation and hydrophilic pervaporation for enhanced separation of non-ideal ternary mixtures

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The separation of non-ideal mixtures using distillation can be an extremely complex process and there continues to be a need to further improve these techniques. A new method which combines extractive heterogeneous-azeotropic distillation (EHAD) and hydrophilic pervaporation (HPV) for the separation of non-ideal ternary mixtures is demonstrated. This improved distillation method combines the benefits of heterogeneous-azeotropic and extractive distillations in one column but no added materials are needed as is usually the case with pervaporation. The separation of water-methanol-ethyl acetate and water-methanol-isopropyl acetate mixtures were investigated to demonstrate the accuracy of the combined EHAD/HPV technique. There is not currently an established treatment strategy for the separation of the second mixtures in the literature. These separation processes were rigorously modelled and optimized using a professional flowsheet. The objective functions were total cost and energy consumption and heat integration was also investigated. The verification of the process modelling was carried out using laboratory-scale measurements. Extractive heterogeneous-distillation combined with methanol dehydration was found to be more efficient than conventional distillation for the separation of these highly non-ideal mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Membrane transfer area, m2

B :

Constant in pervaporation model

D :

Distillate product

i :

Transport coefficient of component i, kmol·m–2·h–1

F :

Feed

N F :

Number of mixture feed stage

N T :

Number of total stages

p :

Pressure, bar

p i0 :

Pure i component vapor pressure, bar

p i1 :

Partial pressure of component i on the liquid phase membrane side, bar

p i3 :

Partial pressure of component i on the vapor phase membrane side, bar

P:

Permeate

Q :

Heat of duty, MJ·h–1

R:

Retentate

U:

UNIQUAC parameter

W:

Bottom product

x :

Concentration of component, wt-%

x i1 :

Concentration of component i in the feed, wt-%

y:

Year

\({\overline {\widetilde a} _i}\) :

Average activity coefficient of component i

References

  1. Szanyi A, Mizsey P, Fonyo Z. Novel hybrid separation processes for solvent recovery based on positioning the extractive heterogeneous-azeotropic distillation. Chemical Engineering and Processing: Process Intensification, 2004, 43(3): 327–338

    Article  CAS  Google Scholar 

  2. Szanyi A, Mizsey P, Fonyo Z. Optimization of nonideal separation structures based on extractive heterogeneous azeotropic distillation. Industrial & Engineering Chemistry Research, 2004, 43(26): 8269–8274

    Article  CAS  Google Scholar 

  3. Szanyi A, Mizsey P, Fonyo Z. Separation of highly non-ideal quaternary mixtures with extractive heterogeneous-azeotropic distillation. Chemical and Biochemical Engineering Quarterly, 2005, 19: 111–121

    CAS  Google Scholar 

  4. Szanyi A. Separation of non-ideal quaternary mixtures with novel hybrid processes based on extractive heterogenous-azeotropic distillation. Dissertation for the Doctoral Degree. Budapest: Budapest University of Technology and Economics, 2005, 56–68

    Google Scholar 

  5. Toth A J, Szanyi A, Angyal-Koczka K, Mizsey P. Enhanced Separation of highly non-ideal mixtures with extractive heterogeneous-azeotropic distillation. Separation Science and Technology, 2016, 51(7): 1238–1247

    Article  CAS  Google Scholar 

  6. Toth A J, Szanyi A, Haaz E, Mizsey P. Separation of process wastewater with extractive heterogeneous-azeotropic distillation. Hungarian Journal of Industry and Chemistry, 2016, 44(1): 29–32

    Article  CAS  Google Scholar 

  7. Wijesinghe A M J C. Development of industrial complexes of special rectification techniques for solvent recovery. Dissertation for the Doctoral Degree. Moscow: Lomonosov Institute of Fine Chemical Engineering, 1985, 20–48

    Google Scholar 

  8. Anastas P T, Warner J C. Green Chemistry: Theory and Practice. 1st ed. Boston: Oxford University Press, 1998, 110–121

    Google Scholar 

  9. Franke M, Górak A, Strube J. Design and optimization of hybrid separation processes. Chemieingenieurtechnik (Weinheim), 2004, 76(3): 199–210.

    CAS  Google Scholar 

  10. Skiborowski M, Harwardt A, Marquardt W. Conceptual design of distillation-based hybrid separation processes. Annual Review of Chemical and Biomolecular Engineering, 2013, 4(1): 45–68

    Article  CAS  PubMed  Google Scholar 

  11. Gorak A, Sorensen E. Distillation: Fundamentals and Principles. 1st ed. Aachen: Academic Press, 2014, 321–330

    Google Scholar 

  12. Toth A J. Comprehensive evaluation and comparison of advanced separation methods on the separation of ethyl acetate-ethanol-water highly non-ideal mixture. Separation and Purification Technology, 2019, 224: 490–508

    Article  CAS  Google Scholar 

  13. Valentinyi N, Mizsey P. Comparison of pervaporation models with simulation of hybrid separation processes. Periodica Polytechnica. Chemical Engineering, 2014, 58(1): 7–14

    Article  CAS  Google Scholar 

  14. Haaz E, Toth A J. Methanol dehydration with pervaporation: Experiments and modelling. Separation and Purification Technology, 2018, 205: 121–129

    Article  CAS  Google Scholar 

  15. Van Baelen D, Van der Bruggen B, Van den Dungen K, Degreve J, Vandecasteele C. Pervaporation of water–alcohol mixtures and acetic acid–water mixtures. Chemical Engineering Science, 2005, 60(6): 1583–1590

    Article  CAS  Google Scholar 

  16. Baker R W. Membrane Technology and Applications. 3rd ed. Chichester: Wiley, 2012, 30–45

    Book  Google Scholar 

  17. Kujawa J, Cerneaux S, Kujawski W. Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes. Journal of Membrane Science, 2015, 474: 11–19

    Article  CAS  Google Scholar 

  18. Kujawski W. Pervaporative removal of organics from water using hydrophobic membranes. Binary mixtures. Separation Science and Technology, 2000, 35(1): 89–108

    Article  CAS  Google Scholar 

  19. Zielińska K, Kujawski W, Chostenko A G. Chitosan hydrogel membranes for pervaporative dehydration of alcohols. Separation and Purification Technology, 2011, 83: 114–120

    Article  CAS  Google Scholar 

  20. Huang R Y M. Pervaporation Membrane Separation Processes. 1st ed. Amsterdam: Elsevier, 1991, 1–109

    Google Scholar 

  21. Liu X, Sun Y, Deng X. Studies on the pervaporation membrane of permeation water from methanol/water mixture. Journal of Membrane Science, 2008, 325(1): 192–198

    Article  CAS  Google Scholar 

  22. Luis P, Degrève J, van der Bruggen B. Separation of methanol–n-butyl acetate mixtures by pervaporation: Potential of 10 commercial membranes. Journal of Membrane Science, 2013, 429: 1–12

    Article  CAS  Google Scholar 

  23. Toth A J, Haaz E, Valentinyi N, Nagy T, Tarjani A J, Fozer D, Andre A, Selim A, Solti S, Mizsey P. Selection between separation alternatives: Membrane flash index (MFLI). Industrial & Engineering Chemistry Research, 2018, 57(33): 11366–11373

    Article  CAS  Google Scholar 

  24. Gmehling J, Onken U, Rarey-Nies J R. Vapor-Liquid Equilibrium Data Collection. Vapor-Liquid Equilibrium Data Collection: Aqueous-Organic Systems. 1st ed. Frankfurt: Dechema, 1978, 1(1):15–100

    Google Scholar 

  25. Akita K, Yoshida F. Phase-equilibria in methanol-ethyl acetate-water system. Journal of Chemical & Engineering Data, 1963, 8(4): 484–490

    Article  CAS  Google Scholar 

  26. Casimiro F M, Constantino D S M, Pereira C S M, Ferreira O, Rodrigues A E, Pinho S P. Vapor–Liquid equilibrium of binary mixtures containing isopropyl acetate and alkanols at 101.32 kPa. Journal of Chemical & Engineering Data, 2015, 60(11): 3181–3186

    Article  CAS  Google Scholar 

  27. Toth A J, Haaz E, Nagy T, Tari R, Tarjani A J, Fozer D, Szanyi A, Koczka K, Racz L, Ugro G, Mizsey P. Evaluation of the accuracy of modelling the separation of highly non-ideal mixtures: Extractive heterogeneous-azeotropic distillation. Computer-Aided Chemical Engineering, 2017, 40: 241–246

    Article  CAS  Google Scholar 

  28. Andre A. Isobutanol-water separation with heterogeneous-azeotropic distillation. Dissertation for the Master Degree. Budapest: Budapest University of Technology and Economics, 2016, 40–43

    Google Scholar 

  29. Valentinyi N, Csefalvay E, Mizsey P. Modelling of pervaporation: Parameter estimation and model development. Chemical Engineering Research & Design, 2013, 91(1): 174–183

    Article  CAS  Google Scholar 

  30. Rautenbach R, Herion C, Meyer-Blumentoth U. Pervaporation membrane separation processes. Membrane Science and Technology Series, 1990, 1: 81–191

    Google Scholar 

  31. Ashraf M T, Schmidt J E, Kujawa J, Kujawski W, Arafat H A. One-dimensional modeling of pervaporation systems using a semiempirical flux model. Separation and Purification Technology, 2017, 174: 502–512

    Article  CAS  Google Scholar 

  32. Koch K, Gorak A. Pervaporation of binary and ternary mixtures of acetone, isopropyl alcohol and water using polymeric membranes: Experimental characterisation and modelling. Chemical Engineering Science, 2014, 115: 95–114

    Article  CAS  Google Scholar 

  33. Toth A J, Andre A, Haaz E, Mizsey P. New horizon for the membrane separation: Combination of organophilic and hydrophilic pervaporations. Separation and Purification Technology, 2015, 156: 432–443

    Article  CAS  Google Scholar 

  34. Mizsey P, Koczka K, Deak A, Fonyo Z. Simulation of pervaporation using the “solution-diffusion” model. Hungarian Journal of Industry and Chemistry, 2005, 7: 239–242

    Google Scholar 

  35. Toth A J. Liquid waste treatment with physicochemical tools for environmental protection. Dissertation for the Doctoral Degree. Budapest: Budapest University of Technology and Economics, 2015, 10–54

    Google Scholar 

  36. Koczka K, Mizsey P, Fonyo Z. Rigorous modelling and optimization of hybrid separation processes based on pervaporation. Central European Journal of Chemistry, 2007, 5: 1124–1147

    CAS  Google Scholar 

  37. Tusel G F, Bruschke H E A. Use of pervaporation systems in the chemical industry. Desalination, 1985, 53(1–3): 327–338

    Article  CAS  Google Scholar 

  38. Pan Q, Shang X, Li J, Ma S, Li L, Sun L. Energy-efficient separation process and control scheme for extractive distillation of ethanol-water using deep eutectic solvent. Separation and Purification Technology, 2019, 219: 113–126

    Article  CAS  Google Scholar 

  39. Chen J, Ye Q, Liu T, Xia H, Feng S. Design and control of heterogeneous azeotropic distillation for separating 2-methylpyridine/water. Chemical Engineering & Technology, 2018, 41(10): 2024–2033

    Article  CAS  Google Scholar 

  40. Li R, Ye Q, Suo X, Dai X, Yu H, Feng S, Xia H. Improving the performance of heat pump-assisted azeotropic dividing wall distillation. Industrial & Engineering Chemistry Research, 2016, 55(22): 6454–6464

    Article  CAS  Google Scholar 

  41. Liang K, Li W, Luo H, Xia M, Xu C. Energy-efficient extractive distillation process by combining preconcentration column and entrainer recovery column. Industrial & Engineering Chemistry Research, 2014, 53(17): 7121–7131

    Article  CAS  Google Scholar 

  42. Liang S, Cao Y, Liu X, Li X, Zhao Y, Wang Y, Wang Y. Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control. Chemical Engineering Research & Design, 2017, 117: 318–335

    Article  CAS  Google Scholar 

  43. Ma S, Shang X, Zhu M, Li J, Sun L. Design, optimization and control of extractive distillation for the separation of isopropanol-water using ionic liquids. Separation and Purification Technology, 2019, 209: 833–850

    Article  CAS  Google Scholar 

  44. Suo X, Ye Q, Li R, Feng S, Xia H. Investigation about energy saving for synthesis of isobutyl acetate in the reactive dividing-wall column. Industrial & Engineering Chemistry Research, 2017, 56 (19): 5607–5617

    Article  CAS  Google Scholar 

  45. Wang C, Wang C, Guang C, Zhang Z. Comparison of extractive distillation separation sequences for acetonitrile/methanol/benzene multi-azeotropic mixtures. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2018, 93(11): 3302–3316

    Article  CAS  Google Scholar 

  46. Xia M, Xin Y, Luo J, Li W, Shi L, Min Y, Xu C. Temperature control for extractive dividing-wall column with an adjustable vapor split: Methylal/methanol azeotrope separation. Industrial & Engineering Chemistry Research, 2013, 52(50): 17996–18013

    Article  CAS  Google Scholar 

  47. Zhao Y, Ma K, Bai W, Du D, Zhu Z, Wang Y, Gao J. Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol. Energy, 2018, 148: 296–308

    Article  CAS  Google Scholar 

  48. Douglas J M. Conceptual Design of Chemical Processes. 1st ed. New York: McGraw-Hill, 1988, 56–67

    Google Scholar 

  49. Koczka K. Environmental conscious design and industria. Budapest: Budapest University of Technology and Economics, 2009, 12–30

    Google Scholar 

  50. Toth A J, Szilagyi B, Haaz E, Solti S, Nagy T, Szanyi A, Nagy J, Mizsey P. Enhanced separation of maximum boiling azeotropic mixtures with extractive heterogeneous-azeotropic distillation. Chemical Engineering Research & Design, 2019, 147: 55–62

    Article  CAS  Google Scholar 

  51. Toth A J, Mizsey P. Comparison of air and steam stripping: Removal of organic halogen compounds from process wastewaters. International Journal of Environmental Science and Technology, 2015, 12: 1321–1330

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, ÚNKP-18-4-BME-209 New National Excellence Program of the Ministry of Human Capacities, OTKA 112699, 128543 and 131586. This research was supported by the European Union and the Hungarian State, co-financed by the European Regional Development Fund in the framework of the GINOP-2.3.4-15-2016- 00004 project, aimed to promote the cooperation between the higher education and the industry. The research reported in this paper has been supported by the National Research, Development and Innovation Fund (TUDFO/51757/2019-ITM, Thematic Excellence Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Jozsef Toth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haaz, E., Szilagyi, B., Fozer, D. et al. Combining extractive heterogeneous-azeotropic distillation and hydrophilic pervaporation for enhanced separation of non-ideal ternary mixtures. Front. Chem. Sci. Eng. 14, 913–927 (2020). https://doi.org/10.1007/s11705-019-1877-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1877-1

Keywords

Navigation