Skip to main content
Log in

The oxidation of cyclo-olefin by the S = 2 ground-state complex [FeIV(O)(TQA)(NCMe)]2+

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Density functional theory calculation is used to investigate the oxidation of cyclo-olefin (cyclobutene, cyclopentene, cyclohexene, cycloheptene, and cyclo-octene) by the complex [FeIV(O)(TQA)(NCMe)]2+, which has S = 2 ground state, and the effect of electronic factors and steric hindrance on reaction barriers. Our results suggest that the oxo–iron(IV) complex can oxidise C–H and C = C bonds via a single-state mechanism, and two different ways of electron transport exist. The energy barriers initially decrease with increasing substrate size, and the trend then reverses. Comparison of the energy barrier in different systems reveals that except for the reaction between [FeIV(O)(TQA)(NCMe)]2+ and cycloheptene, oxo–iron(IV) complexes prefer epoxidation to hydroxylation. However, the hydroxylated product is more stable than the corresponding epoxidated product. This result indicates that the products of epoxidation tend to decompose first. The energy barrier of hydroxylation and epoxidation originates from the balance of orbital interaction and Pauli repulsion from the equatorial ligand and protons on the approaching substrate. In this regard, we calculate the weak interaction between two fragments (oxo–iron complex and substrates) using the independent gradient model and drawn the corresponding 3D isosurface representations of reactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schwarz H (2011) Angew Chem Int Ed 50:10096–10115

    Article  CAS  Google Scholar 

  2. Roudesly F, Oble J, Poli G (2017) J Mol Catal A: Chem 426:275–296

    Article  CAS  Google Scholar 

  3. Huang XY, Groves JT (2018) Chem Rev 118:2491–2553

    Article  CAS  PubMed  Google Scholar 

  4. Mayank P, Que L Jr (2015) J Am Chem Soc 48:2443–2452

    Google Scholar 

  5. Solomon EI, Stahl SS (2019) Chem Rev 118:2299–2301

    Article  CAS  Google Scholar 

  6. Schwarz H, Gonzalez-Navarrete P, Li JL, Schlangen M, Sun XY, Weiske T, Zhou SD (2017) Organometallics 36:8–17

    Article  CAS  Google Scholar 

  7. Kirkland JK, Khan SN, Casale B, Miliordos E, Vogiatzis KD (2018) Phys Chem Chem Phys 20:28786–32879

    Article  CAS  PubMed  Google Scholar 

  8. Price JC, Barr EW, Tirupati B, Bollinger JM Jr, Krebs C (2003) Biochemistry 42:7497–7508

    Article  CAS  PubMed  Google Scholar 

  9. Price JC, Barr EW, Glass TE, Krebs C, Bollinger JM Jr (2003) J Am Chem Soc 125:13008–13013

    Article  CAS  PubMed  Google Scholar 

  10. Grzyska PK, Hausinger RP, Proshlyakov DA (2010) Anal Biochem 399:64–71

    Article  CAS  PubMed  Google Scholar 

  11. Galonic DP, Barr EW, Walsh CT, Bollinger JM Jr, Krebs C (2007) Nat Chem Biol 3:113–116

    Article  CAS  PubMed  Google Scholar 

  12. Fujimori DG, Barr EW, Matthews ML, Koch GM, Yonce JR, Walsh CT, Bollinger JM Jr, Krebs C, Riggs-Gelasco PJ (2007) J Am Chem Soc 129:13408–13409

    Article  CAS  PubMed  Google Scholar 

  13. Panay AJ, Lee M, Krebs C, Bollinger JM Jr, Fitzpatrick PF (2011) Biochemistry 50:1928–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Matthews ML, Krest CM, Barr EW, Vaillancourt FH, Walsh CT, Green MT, Krebs C, Bollinger JM Jr (2009) Biochemistry 48:4331–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shaun DW, Martin S, Megan LM, Lei VL, Yeonju K, Kiyoung P, Bell III CB, Ercan A, Jiyong Z, Yoshitaka Y, Shinji K, Makoto S, Carsten K, Martin JB, Edward IS (2013) Nature 499:320–323

    Article  CAS  Google Scholar 

  16. Hoffart LM, Barr EW, Guyer RB, Bollinger JM Jr (2006) Krebs C. Proc Natl Acad Sci U S A 103:14738–14743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eser BE, Barr EW, Frantom PA, Saleh L, Bollinger JM, Krebs C, Fitzpatrick PF (2007) J Am Chem Soc 129:11334–11335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rohde J-U, In J-H, Lim MH, Brennessel WW, Bukowski MR, Stubna A, Münck E, Nam W, Que L Jr (2003) Science 299:1037–1039

    Article  CAS  PubMed  Google Scholar 

  19. Schroder D, Shaik S, Schwarz H (2000) Acc Chem Res 33:139–145

    Article  CAS  PubMed  Google Scholar 

  20. Shaik S, Chen H, Janardanan D (2011) Nat Chem 3:19–27

    Article  CAS  PubMed  Google Scholar 

  21. McDonald AR, Que L Jr (2013) Coord Chem Rev 257:414–428

    Article  CAS  Google Scholar 

  22. Fenton HJH (1894) J Chem Soc 65:899–910

    Article  CAS  Google Scholar 

  23. Buda F, Ensing B, Gribnau MCM, Baerends EJ (2003) Chem Eur J 9:3436–3444

    Article  CAS  PubMed  Google Scholar 

  24. Walling C (1998) Acc Chem Res 31:155–157

    Article  CAS  Google Scholar 

  25. Pestovsky O, Stoian S, Bominaar EL, Shan X, Münck E, Que L Jr, Bakac A (2005) Angew Chem Int Ed 44:6871–6874

    Article  CAS  Google Scholar 

  26. Biswas AN, Puri M, Meier KK, Oloo WN, Rohde GT, Bominaar EL, Munck E, Que L Jr (2015) J Am Chem Soc 137:2428–2431

    Article  CAS  PubMed  Google Scholar 

  27. Bigi JP, Harman WH, Lassalle-Kaiser B, Robles DM, Stich TA, Yano J, Britt RD, Chang CJ (2012) J Am Chem Soc 134:1536–1542

    Article  CAS  PubMed  Google Scholar 

  28. Nam W, Que L Jr (2015) Acc Chem Res 48:2612–2621

    Article  CAS  Google Scholar 

  29. Kim S, Cho KB, Lee YM, Chen J, Fukuzumi S, Nam W (2016) J Am Chem Soc 138:10654–10663

    Article  CAS  PubMed  Google Scholar 

  30. Canta M, Rodríguez M, Costas M (2015) Site Sel Catal 372:27–54

    Article  CAS  Google Scholar 

  31. Hirao H, Que L Jr, Nam W, Shaik S (2008) Chem Eur J 14:1740–1756

    Article  CAS  PubMed  Google Scholar 

  32. Mandal D, Ramanan R, Usharani D, Janardanan D, Wang BJ, Shaik S (2015) J Am Chem Soc 137:722–733

    Article  CAS  PubMed  Google Scholar 

  33. de Visser SP (2006) J Am Chem Soc 128:15809–15818

    Article  PubMed  CAS  Google Scholar 

  34. de Visser SP (2006) J Am Chem Soc 128:9813–9824

    Article  PubMed  CAS  Google Scholar 

  35. de Visser SP, Nam W (2008) J Phys Chem A 112:12887–12895

    Article  PubMed  CAS  Google Scholar 

  36. Hirao H, Kumar D, Que L Jr, Shaik S (2006) J Am Chem Soc 128:8590–8606

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Wang Y, Han K-L (2009) J Biol Inorg Chem 14:533–545

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Han K-L (2010) J Biol Inorg Chem 15:351–359

    Article  CAS  PubMed  Google Scholar 

  39. Kumar D, Hirao H, Que L Jr, Shaik S (2005) J Am Chem Soc 127:8026–8027

    Article  CAS  PubMed  Google Scholar 

  40. de Visser SP (2005) J Phys Chem A 109:11050–11057

    Article  PubMed  CAS  Google Scholar 

  41. Shaik S, Kumar D, de Visser SP (2008) J Am Chem Soc 130:10128–10140

    Article  CAS  PubMed  Google Scholar 

  42. Frisch MJ et al (2009) Gaussian 09, revision D.01. Gaussian, Wallingford

  43. Becke AD (1992) J Chem Phys 96:2155–2160

    Article  CAS  Google Scholar 

  44. Becke AD (1992) J Chem Phys 97:9173–9177

    Article  CAS  Google Scholar 

  45. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  46. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  47. Hay JP, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  48. Friesner RA, Murphy RB, Beachy MD, Ringnalda MN, Pollard WT, Dunietz BD, Cao YX (1999) J Phys Chem A 103:1913–1928

    Article  CAS  Google Scholar 

  49. Schaefer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577

    Article  CAS  Google Scholar 

  50. Schaefer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835

    Article  CAS  Google Scholar 

  51. Sebastien C, Frederic B, Eric H (2014) J Comp Chem 35:82–93

    Article  CAS  Google Scholar 

  52. Roy L (2019) Chem Plus Chem 84:893–906

    CAS  PubMed  Google Scholar 

  53. Manzetti S, Tian L, Behzadi H, Estrafili MD, Thi L (2015) Ha-Linh, Vach H. RSC Advances 5:78192–78208

    Article  CAS  Google Scholar 

  54. Hirao H, Kumar D, Thile W, Shaik S (2005) J Am Chem Soc 127:13007–13018

    Article  CAS  PubMed  Google Scholar 

  55. Mukherjee G, Alili A, Barman P, Kumar D, Sastri CV, de Visser SP (2019) Chemistry 25:5086–5098

    Article  CAS  PubMed  Google Scholar 

  56. Amy T, Matthew GQ, Tomasz B, de Visser SP (2018) ACS Catal 8:8685–8698

    Article  CAS  Google Scholar 

  57. Mondal B, Roy L, Neese F, Shengfa F (2016) Israel J Chem 56:768–772

    Google Scholar 

  58. Saouma CT, Mayer JM (2014) Chem Sci 5:21–31

    Article  CAS  Google Scholar 

  59. Kumar D, Latifi R, Kumar S, Rybak-Akimova EV, Sainna MA, de Visser SP (2013) Inorg Chem 52:7968–7979

    Article  CAS  PubMed  Google Scholar 

  60. Kumar D, Karamzadeh B, Sastry GN, de Visser SP (2010) J Am Chem Soc 132:7659–7667

    Google Scholar 

  61. Bae SH, Seo MS, Lee Y-M, Cho K-B, Kim W-S, Nam W (2016) Angew Chem Int Ed 55:8027–8031

    Article  CAS  Google Scholar 

  62. Klein JE, Dereli B, Que L Jr, Cramer CJ (2016) Chem Commun 52:10509–10512

    Article  CAS  Google Scholar 

  63. Lefebvre C, Rubez G, Khartabil H, Boisson JC, Contreras-Garcia J, Henon E (2017) Phys Chem Chem Phys 19:17928–17936

    Article  CAS  PubMed  Google Scholar 

  64. Tian L, Feiwu C (2012) J Comput Chem 33:580–592

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Liaoning Province (Grant 20180550765), the Open Project of SKLMRD (Open Project of State Key Laboratory of Molecular Reaction Dynamics), and National Natural Science Foundation of China (Grant 31771914). The results of quantum chemical calculations described in this paper were obtained on the homemade Linux cluster of group 1101, Dalian Institute of Chemical Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, Y., Li, W. et al. The oxidation of cyclo-olefin by the S = 2 ground-state complex [FeIV(O)(TQA)(NCMe)]2+. J Biol Inorg Chem 25, 371–382 (2020). https://doi.org/10.1007/s00775-020-01768-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01768-1

Keywords

Navigation