Skip to main content
Log in

Curve location influences spinal balance in coronal and sagittal planes but not transversal trunk motion in adolescents with idiopathic scoliosis: a prospective observational study

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

In adolescent idiopathic scoliosis (AIS), spinal deformity can be seen in the thoracic or in the lumbar area. Although differences according to curve location are well described on standard radiographs, dynamic consequences of such difference remain unclear. Our objective was to explore the differences in dynamic spinal balance according to curve location in AIS patients using gait analysis

Methods

We prospectively included 22 females with AIS planned for surgical correction (16.3 years old, 81% Risser ≥ 4). Patients were divided into two matched cohorts, according to major curve location [right thoracic (Lenke 1) or left lumbar (Lenke 5)]. Gait analysis was performed the day before surgery. Global balance was analyzed as the primary outcome. Local curves parameters (dynamic Cobb angles) were defined as the secondary outcome.

Results

In coronal plane, Lenke 5 patients had a left trunk shift, whereas trunk was shifted to the right in Lenke 1 patients (− 20.7 vs 6.3, p = 0.001). In the sagittal plane, the main difference between the two groups was T12 position that remained over the pelvis during gait in Lenke 5 patients, whereas it was anterior to the pelvis in Lenke 1 patients. In the transversal plane, Lenke 5 and Lenke 1 patients presented the same gait abnormalities, with a global trunk rotation to the left (− 4.8 vs − 7.6, p = 0,165).

Conclusion

This is the first study to provide the results of a direct comparison between Lenke 1 and Lenke 5 patients during gait. Curve location influenced coronal and sagittal balance, but abnormalities of transversal trunk motion were the same, wherever the curve was located.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Perdriolle R, Vidal J (1985) Thoracic idiopathic scoliosis curve evolution and prognosis. Spine (Phila Pa 1976) 10:785–791. https://doi.org/10.1097/00007632-198511000-00001

    Article  CAS  Google Scholar 

  2. Perdriolle R, Vidal J (1987) Morphology of scoliosis: three-dimensional evolution. Orthopedics 10:909–915

    CAS  PubMed  Google Scholar 

  3. Stokes IA (1989) Axial rotation component of thoracic scoliosis. J Orthop Res 7:702–708. https://doi.org/10.1002/jor.1100070511

    Article  CAS  PubMed  Google Scholar 

  4. Cholewicki J, Crisco JJ, Oxland TR et al (1996) Effects of posture and structure on three-dimensional coupled rotations in the lumbar spine. A biomechanical analysis. Spine (Phila Pa 1976) 21:2421–2428. https://doi.org/10.1097/00007632-199611010-00003

    Article  CAS  Google Scholar 

  5. Tredwell SJ, Sawatzky BJ, Hughes BL (1999) Rotations of a helix as a model for correction of the scoliotic spine. Spine (Phila Pa 1976) 24:1223–1227. https://doi.org/10.1097/00007632-199906150-00009

    Article  CAS  Google Scholar 

  6. Lenke LG (2005) Lenke classification system of adolescent idiopathic scoliosis: treatment recommendations. Instr Course Lect 54:537–542

    PubMed  Google Scholar 

  7. Pesenti S, Jouve JL, Morin C et al (2015) Evolution of adolescent idiopathic scoliosis: results of a multicenter study at 20 years’ follow-up. Rev Chir Orthop Traumatol. https://doi.org/10.1016/j.otsr.2015.05.004

    Article  Google Scholar 

  8. Gage JR (1983) Gait analysis for decision-making in cerebral palsy. Bull Hosp Jt Dis Orthop Inst 43:147–163

    CAS  PubMed  Google Scholar 

  9. Ollivier M, Parratte S, Lunebourg A et al (2016) The John Insall Award: no functional benefit after unicompartmental knee arthroplasty performed with patient-specific instrumentation: a randomized trial. Clin Orthop Relat Res 474:60–68. https://doi.org/10.1007/s11999-015-4259-0

    Article  PubMed  Google Scholar 

  10. Ranavolo A, Don R, Draicchio F et al (2013) Modelling the spine as a deformable body: feasibility of reconstruction using an optoelectronic system. Appl Ergon 44:192–199. https://doi.org/10.1016/j.apergo.2012.07.004

    Article  PubMed  Google Scholar 

  11. Lenke LG, Engsberg JR, Ross SA et al (2001) Prospective dynamic functional evaluation of gait and spinal balance following spinal fusion in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 26:E330–E337

    Article  CAS  Google Scholar 

  12. Kramers-de Quervain IA, Müller R, Stacoff A et al (2004) Gait analysis in patients with idiopathic scoliosis. Eur Spine J 13:449–456. https://doi.org/10.1007/s00586-003-0588-x

    Article  PubMed  PubMed Central  Google Scholar 

  13. Patel A, Pivec R, Shah NV et al (2018) Motion analysis in the axial plane after realignment surgery for adolescent idiopathic scoliosis. Gait Posture 66:181–188. https://doi.org/10.1016/j.gaitpost.2018.08.015

    Article  PubMed  Google Scholar 

  14. Yang JH, Suh SW, Sung PS, Park WH (2013) Asymmetrical gait in adolescents with idiopathic scoliosis. Eur Spine J 22:2407–2413. https://doi.org/10.1007/s00586-013-2845-y

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mahaudens P, Banse X, Mousny M, Detrembleur C (2009) Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis. Eur Spine J 18:512–521. https://doi.org/10.1007/s00586-009-0899-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nishida M, Nagura T, Fujita N et al (2019) Spinal correction surgery improves asymmetrical trunk kinematics during gait in adolescent idiopathic scoliosis with thoracic major curve. Eur Spine J 28:619–626. https://doi.org/10.1007/s00586-018-5741-7

    Article  PubMed  Google Scholar 

  17. Blondel B, Pomero V, Moal B et al (2012) Sagittal spine posture assessment: feasibility of a protocol based on intersegmental moments. Orthop Traumatol Surg Res 98:109–113. https://doi.org/10.1016/j.otsr.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  18. Blondel B, Viehweger E, Moal B et al (2015) Postural spinal balance defined by net intersegmental moments: results of a biomechanical approach and experimental errors measurement. World J Orthop 6:983–990. https://doi.org/10.5312/wjo.v6.i11.983

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pesenti S, Prost S, Blondel B et al (2019) Correlations linking static quantitative gait analysis parameters to radiographic parameters in adolescent idiopathic scoliosis. Orthop Traumatol Surg Res. https://doi.org/10.1016/j.otsr.2018.09.024

    Article  PubMed  Google Scholar 

  20. Pesenti S, Prost S, Pomero V et al (2019) Characterization of trunk motion in adolescents with right thoracic idiopathic scoliosis. Eur Spine J 28:2025–2033. https://doi.org/10.1007/s00586-019-06067-1

    Article  PubMed  Google Scholar 

  21. Vora V, Crawford A, Babekhir N et al (2007) A pedicle screw construct gives an enhanced posterior correction of adolescent idiopathic scoliosis when compared with other constructs: myth or reality. Spine (Phila Pa 1976) 32:1869–1874. https://doi.org/10.1097/BRS.0b013e318108b912

    Article  Google Scholar 

  22. Nishida M, Nagura T, Fujita N et al (2017) Position of the major curve influences asymmetrical trunk kinematics during gait in adolescent idiopathic scoliosis. Gait Posture 51:142–148. https://doi.org/10.1016/j.gaitpost.2016.10.004

    Article  PubMed  Google Scholar 

  23. Thorstensson A, Nilsson J, Carlson H, Zomlefer MR (1984) Trunk movements in human locomotion. Acta Physiol Scand 121:9–22. https://doi.org/10.1111/j.1748-1716.1984.tb10452.x

    Article  CAS  PubMed  Google Scholar 

  24. Chung CY, Park MS, Lee SH et al (2010) Kinematic aspects of trunk motion and gender effect in normal adults. J Neuroeng Rehabil 7:9. https://doi.org/10.1186/1743-0003-7-9

    Article  PubMed  PubMed Central  Google Scholar 

  25. Assaiante C, Mallau S, Jouve J-L et al (2012) Do adolescent idiopathic scoliosis (AIS) neglect proprioceptive information in sensory integration of postural control? PLoS ONE 7:e40646. https://doi.org/10.1371/journal.pone.0040646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mallau S, Bollini G, Jouve J-L, Assaiante C (2007) Locomotor skills and balance strategies in adolescents idiopathic scoliosis. Spine (Phila Pa 1976) 32:E14–22. https://doi.org/10.1097/01.brs.0000251069.58498.eb

    Article  Google Scholar 

Download references

Funding

No funding was received by any of the author for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Pesenti.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pesenti, S., Pomero, V., Prost, S. et al. Curve location influences spinal balance in coronal and sagittal planes but not transversal trunk motion in adolescents with idiopathic scoliosis: a prospective observational study. Eur Spine J 29, 1972–1980 (2020). https://doi.org/10.1007/s00586-020-06361-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-020-06361-3

Keywords

Navigation