Skip to main content

Advertisement

Log in

Structural insights into the origin of phosphoinositide 3-kinase inhibition

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Class I phosphoinositide 3-kinases (PI3Ks) are currently considered as significant targets for the development of novel pharmaceuticals to treat cancers and inflammatory diseases. Since the subfamilies are differently involved in related disorders and within different subcellular compartments, the development of specific subfamily-selective inhibitors seems pertinent. However, discovery of compounds with capability to block a specific isoform of PI3K still remains as a major challenge. Therefore, herein, a combination of proteochemometric (PCM) modeling and molecular docking simulation was applied to investigate the chemical interaction space governed by α and β isoforms of PI3K and their inhibitors. Since achieving selectivity can be facilitated by considering the information of both ligand and receptor, the interaction space and selectivity of different chemical compounds towards different PI3K isoforms were explored via PCM modeling. Several approaches were applied to validate the predictivity and the robustness of the constructed model. Excellent values of 0.95, 0.85, and 0.77 were observed for the goodness of fit (R2), internal cross-validation (Q2), and external validation (Qext2), respectively. The practical application of this information was revealed via the design of a few novel compounds whereby structural modifications to the compound can exert influences on the selectivity against PI3Kα and PI3Kβ. Applying molecular docking approach, binding energies and molecular interactions were investigated for the novel compounds against both PI3Kα and PI3Kβ. Molecular docking analysis of novel design compounds was highly compatible with the PCM-based predicted biological activities. These results show that our model provided knowledge on the structural features of compounds which is promising for the design of new selective inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657

    CAS  PubMed  Google Scholar 

  2. Sansal I, Sellers WR (2004) The biology and clinical relevance of the PTEN tumor suppressor pathway. Jap J Clin Oncol 22(14):2954–2963

    CAS  Google Scholar 

  3. Fritsch C, Huang A, Chatenay-Rivauday C, Schnell C, Reddy A, Liu M et al (2014) Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol Cancer Ther 13(5):1117–1129

    CAS  PubMed  Google Scholar 

  4. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11(5):329–341

    CAS  PubMed  Google Scholar 

  5. Zhao W, Qiu Y, Kong D (2017) Class I phosphatidylinositol 3-kinase inhibitors for cancer therapy. Acta Pharm Sin B 7(1):27–37

    PubMed  Google Scholar 

  6. Franke TF, Kaplan DR, Cantley LC (1997) PI3K: downstream AKTion blocks apoptosis. Cell 88(4):435–437

    CAS  PubMed  Google Scholar 

  7. Shepherd PR, Withers DJ, Siddle K (1998) Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. J Biochem 333(3):471–490

    CAS  Google Scholar 

  8. Wang X, Ding J (2015) Meng L-h. PI3K isoform-selective inhibitors: next-generation targeted cancer therapies. Acta Pharmacol Sin 36(10):1170–1176

    PubMed  PubMed Central  Google Scholar 

  9. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ et al (1994) Phosphatidylinositol-3-OH kinase direct target of Ras. Nature 370(6490):527–532

    CAS  PubMed  Google Scholar 

  10. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4(12):988–1004

    CAS  PubMed  Google Scholar 

  11. Vanhaesebroeck B, Ali K, Bilancio A, Geering B, Foukas LC (2005) Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem Sci 30(4):194–204

    CAS  PubMed  Google Scholar 

  12. Rommel C, Camps M, Ji H (2007) PI3Kδ and PI3Kγ: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat Rev Immunol 7(3):191–201

    CAS  PubMed  Google Scholar 

  13. Singh P, Dar MS, Dar MJ (2016) p110α and p110β isoforms of PI3K signaling: are they two sides of the same coin? FEBS Lett 590(18):3071–3082

    CAS  PubMed  Google Scholar 

  14. Ding X, Liu X, Zhu L (2017) Quantitative structure-selectivity relationship (QSSR)-based molecular insight into the cross-reactivity and specificity of chemotherapeutic inhibitors between PI3Kα and PI3Kβ. J Chemom 31(12):e2927

    Google Scholar 

  15. Utermark T, Rao T, Cheng H, Wang Q, Lee SH, Wang ZC et al (2012) The p110α and p110β isoforms of PI3K play divergent roles in mammary gland development and tumorigenesis. GenesDev 26(14):1573–1586

    CAS  Google Scholar 

  16. Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O et al (2006) A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell 125(4):733–747

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sopasakis VR, Liu P, Suzuki R, Kondo T, Winnay J, Tran TT et al (2010) Specific roles of the p110α isoform of phosphatidylinsositol 3-kinase in hepatic insulin signaling and metabolic regulation. Cell Metab 11(3):220–230

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Graupera M, Guillermet-Guibert J, Foukas LC, Phng L-K, Cain RJ, Salpekar A et al (2008) Angiogenesis selectively requires the p110α isoform of PI3K to control endothelial cell migration. Nature 453(7195):662–666

    CAS  PubMed  Google Scholar 

  19. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304(5670):554

    CAS  PubMed  Google Scholar 

  20. Levine DA, Bogomolniy F, Yee CJ, Lash A, Barakat RR, Borgen PI et al (2005) Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clin Cancer Res 11(8):2875–2878

    CAS  PubMed  Google Scholar 

  21. Whyte DB, Holbeck SL (2006) Correlation of PIK3Ca mutations with gene expression and drug sensitivity in NCI-60 cell lines. Biochem Biophys Res Commun 340(2):469–475

    CAS  PubMed  Google Scholar 

  22. Shayesteh L, Lu Y, Kuo W-L, Baldocchi R, Godfrey T, Collins C et al (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21(1):99–102

    CAS  PubMed  Google Scholar 

  23. Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, Hooi CS et al (2004) Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 64(21):7678–7681

    CAS  PubMed  Google Scholar 

  24. Jackson SP, Schoenwaelder SM, Goncalves I, Nesbitt WS, Yap CL, Wright CE et al (2005) PI 3-kinase p110β: a new target for antithrombotic therapy. Nat Med 11(5):507–514

    CAS  PubMed  Google Scholar 

  25. Matheny Jr RW, Adamo ML (2010) PI3K p110α and p110β have differential effects on Akt activation and protection against oxidative stress-induced apoptosis in myoblasts. Cell Death Differ 17(4):677–688

    CAS  PubMed  Google Scholar 

  26. Juvin V, Malek M, Anderson KE, Dion C, Chessa T, Lecureuil C et al (2013) Signaling via class IA Phosphoinositide 3-kinases (PI3K) in human, breast-derived cell lines. PLoS One 8(10):e75045

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Marqués M, Kumar A, Poveda AM, Zuluaga S, Hernández C, Jackson S et al (2009) Specific function of phosphoinositide 3-kinase beta in the control of DNA replication. Proc Natl Acad Sci 106(18):7525–7530

    PubMed  PubMed Central  Google Scholar 

  28. Kumar A, Fernandez-Capetillo O, Carrera AC (2010) Nuclear phosphoinositide 3-kinase β controls double-strand break DNA repair. Proc Natl Acad Sci 107(16):7491–7496

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Redondo-Muñoz J, Pérez-García V, Rodríguez MJ, Valpuesta JM, Carrera AC (2015) Phosphoinositide 3-kinase beta protects nuclear envelope integrity by controlling RCC1 localization and Ran activity. Mol Cell Biol 35(1):249–263

    PubMed  Google Scholar 

  30. Singh P, Dar MS, Singh G, Jamwal G, Sharma PR, Ahmad M et al (2016) Dynamics of GFP-fusion p110α and p110β isoforms of PI3K signaling pathway in Normal and Cancer cells. J Cell Biochem 117(12):2864–2874

    CAS  PubMed  Google Scholar 

  31. Shaikh N, Sharma M, Garg P (2016) An improved approach for predicting drug–target interaction: proteochemometrics to molecular docking. Mol BioSyst 12(3):1006–1014

    CAS  PubMed  Google Scholar 

  32. Guha R, Bender A (2011) Computational approaches in cheminformatics and bioinformatics. Wiley

  33. Lapinsh M, Prusis P, Gutcaits A, Lundstedt T, Wikberg JE (2001) Development of proteo-chemometrics: a novel technology for the analysis of drug-receptor interactions. BBA-Gen Subjects 1525(1–2):180–190

    CAS  Google Scholar 

  34. van Westen GJ, Wegner JK, IJzerman AP, van Vlijmen HW, Bender A (2011) Proteochemometric modeling as a tool to design selective compounds and for extrapolating to novel targets. MedChemComm 2(1):16–30

    Google Scholar 

  35. Lapinsh M, Prusis P, Lundstedt T, Wikberg JE (2002) Proteochemometrics modeling of the interaction of amine G-protein coupled receptors with a diverse set of ligands. Mol Pharmacol 61(6):1465–1475

    CAS  PubMed  Google Scholar 

  36. Lapinsh M, Prusis P, Uhlén S, Wikberg JE (2005) Improved approach for proteochemometrics modeling: application to organic compound—amine G protein-coupled receptor interactions. Bioinformatics 21(23):4289–4296

    CAS  PubMed  Google Scholar 

  37. Lapins M, Wikberg JE (2010) Kinome-wide interaction modelling using alignment-based and alignment-independent approaches for kinase description and linear and non-linear data analysis techniques. BMC Bioinformatics 11(1):339–353

    PubMed  PubMed Central  Google Scholar 

  38. Fernandez M, Ahmad S, Sarai A (2010) Proteochemometric recognition of stable kinase inhibition complexes using topological autocorrelation and support vector machines. J Chem Inf Model 50(6):1179–1188

    CAS  PubMed  Google Scholar 

  39. Subramanian V, Prusis P, Pietilä L-O, Xhaard H, Wohlfahrt G (2013) Visually interpretable models of kinase selectivity related features derived from field-based proteochemometrics. J Chem Inf Model 53(11):3021–3030

    CAS  PubMed  Google Scholar 

  40. Prusis P, Lapins M, Yahorava S, Petrovska R, Niyomrattanakit P, Katzenmeier G et al (2008) Proteochemometrics analysis of substrate interactions with dengue virus NS3 proteases. Bioorg Med Chem 16(20):9369–9377

    CAS  PubMed  Google Scholar 

  41. Lapins M, Eklund M, Spjuth O, Prusis P, Wikberg JE (2008) Proteochemometric modeling of HIV protease susceptibility. BMC Bioinformatics 9(1):181–191

    PubMed  PubMed Central  Google Scholar 

  42. Rasti B, Karimi-Jafari MH, Ghasemi JB (2016) Quantitative characterization of the interaction space of the mammalian carbonic anhydrase isoforms I, II, VII, IX, XII, and XIV and their inhibitors, using the proteochemometric approach. Chem Biol Drug Des 88(3):341–353

    CAS  PubMed  Google Scholar 

  43. Rasti B, Namazi M, Karimi-Jafari M, Ghasemi JB (2017) Proteochemometric modeling of the interaction space of carbonic anhydrase and its inhibitors: an assessment of structure-based and sequence-based descriptors. Mol Inform 36(4):1600102

    Google Scholar 

  44. Rasti B, Heravi YE (2018) Probing the chemical interaction space governed by 4-aminosubstituted benzenesulfonamides and carbonic anhydrase isoforms. Res Pharm Sci 13(3):192–204

    PubMed  PubMed Central  Google Scholar 

  45. Kontijevskis A, Komorowski J, Wikberg JE (2008) Generalized proteochemometric model of multiple cytochrome p450 enzymes and their inhibitors. J Chem Inf Model 48(9):1840–1850

    CAS  PubMed  Google Scholar 

  46. Simeon S, Spjuth O, Lapins M, Nabu S, Anuwongcharoen N, Prachayasittikul V et al (2016) Origin of aromatase inhibitory activity via proteochemometric modeling. PeerJ 4:e1979

    PubMed  PubMed Central  Google Scholar 

  47. Rasti B, Mazraedoost S, Panahi H, Falahati M, Attar F (2019) New insights into the selective inhibition of the β-carbonic anhydrases of pathogenic bacteria Burkholderia pseudomallei and Francisella tularensis: a proteochemometrics study. Mol Divers 23:263–273

    CAS  PubMed  Google Scholar 

  48. Rasti B, Schaduangrat N, Shahangian SS, Nantasenamat C (2017) Exploring the origin of phosphodiesterase inhibition via proteochemometric modeling. RSC Adv 7(45):28056–28068

    CAS  Google Scholar 

  49. Hariri S, Ghasemi JB, Shirini F, Rasti B (2019) Probing the origin of dihydrofolate reductase inhibition via proteochemometric modeling. J Chemom 33(2):e3090

    Google Scholar 

  50. Rasti B, Shahangian SS (2018) Proteochemometric modeling of the origin of thymidylate synthase inhibition. Chem Biol Drug Des 91(5):1007–1016

    CAS  PubMed  Google Scholar 

  51. Chen X, Liu M, Gilson MK (2001) BindingDB: a web-accessible molecular recognition database. Comb Chem High Throughput Screen 4(8):719–725

    CAS  PubMed  Google Scholar 

  52. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2006) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res 35(suppl_1):D198–D201

    PubMed  PubMed Central  Google Scholar 

  53. Hellberg S, Sjoestroem M, Skagerberg B, Wold S (1987) Peptide quantitative structure-activity relationships, a multivariate approach. J Med Chem 30(7):1126–1135

    CAS  PubMed  Google Scholar 

  54. Sandberg M, Eriksson L, Jonsson J, Sjöström M, Wold S (1998) New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem 41(14):2481–2491

    CAS  PubMed  Google Scholar 

  55. Sybyl, a molecular modeling system, is supplied by Tripos, Inc.: St. Louis, MO 63144

  56. Pastor M, Cruciani G, McLay I, Pickett S, Clementi S (2000) GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J Med Chem 43(17):3233–3243

    CAS  PubMed  Google Scholar 

  57. Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics 11(1):137–148

  58. Rogers D, Hopfinger AJ (1994) Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J Chem Inf Comput 34(4):854–866

    CAS  Google Scholar 

  59. Hou T, Wang J, Liao N, Xu X (1999) Applications of genetic algorithms on the structure− activity relationship analysis of some cinnamamides. J Chem Inf Comput Sci 39(5):775–781

    CAS  PubMed  Google Scholar 

  60. (2005) PLS Toolbox, version 3.5. Eigenvector Research, Inc., Manson

  61. Haaland DM, Thomas EV (1988) Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal Chem 60(11):1193–1202

    CAS  Google Scholar 

  62. Eriksson L, Jaworska J, Worth AP, Cronin MT, McDowell RM, Gramatica P (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs. Environ Health Perspect 111(10):1361–1375

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Roy K, Das RN, Ambure P, Aher RB (2016) Be aware of error measures. Further studies on validation of predictive QSAR models. Chemom Intell Lab Syst 152:18–33

    CAS  Google Scholar 

  64. de Souza LM, Mitsutake H, Gontijo LC, Neto WB (2014) Quantification of residual automotive lubricant oil as an adulterant in Brazilian S-10 diesel using MIR spectroscopy and PLS. Fuel 130:257–262

    Google Scholar 

  65. Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26(5):694–701

    CAS  Google Scholar 

  66. Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22(1):69–77

    CAS  Google Scholar 

  67. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748

    CAS  PubMed  Google Scholar 

  68. Momany FA, Rone R (1992) Validation of the general purpose QUANTA® 3.2/CHARMm® force field. J Comput Chem 13(7):888–900

    CAS  Google Scholar 

  69. Yusuf D, Davis AM, Kleywegt GJ, Schmitt S (2008) An alternative method for the evaluation of docking performance: RSR vs RMSD. J Chem Inf Model 48(7):1411–1422

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behnam Rasti.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariri, S., Rasti, B., Mirpour, M. et al. Structural insights into the origin of phosphoinositide 3-kinase inhibition. Struct Chem 31, 1505–1522 (2020). https://doi.org/10.1007/s11224-020-01510-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01510-2

Keywords

Navigation