Skip to main content
Log in

Computation of absolute radii of 103 elements of the periodic table in terms of nucleophilicity index

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The size of an atom is a very significant parameter in associating and understanding a wide range of atomic or molecular physico-chemical properties. Considering importance of the size descriptor, an ansatz to compute absolute radius (r) in terms of nucleophilicity index (N) is proposed in the present work for atoms of 103 elements of periodic table. We have followed a very simple empirical approach to compute the absolute radii of the elements invoking regression analysis the new set of radii satisfy all the sine qua non of periodic properties. Relativistic effects are pronounced in the computed radii. A close agreement is noted on comparing the computed data with the existing scales. A strong quantitative correlation is observed with ionization potential and electronegativity for the computed data. Moreover, the absolute radius calculated in the present effort is employed in calculating internuclear bond distance, a real field descriptor, for several heteronuclear diatomic molecules. A significant agreement between the theoretically computed and experimentally determined internuclear bond distances is observed, thus corroborating the consistency of our proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Mendeleev, Z. Chemie 12, 405–406 (1869)

    Google Scholar 

  2. N. Bohr, Lond. Edinb. Dubl. Phil. Mag. 26, 476–502 (1913)

    Google Scholar 

  3. M.N. Saha, Nature 105, 232–233 (1920)

    Google Scholar 

  4. S.N. Basu, Lond. Edinb. Dubl. Phil. Mag. 40, 619–627 (1920)

    CAS  Google Scholar 

  5. A.S. Eve, Nature 107, 552–553 (1921)

    CAS  Google Scholar 

  6. S. Tamura, J. Mater. Sci. Lett. 15, 1678–1679 (1996)

    CAS  Google Scholar 

  7. H.J. Bohórquez, R.J. Boyd, Chem. Phys. Lett. 480, 127–131 (2009)

    Google Scholar 

  8. D.C. Ghosh, J. Theor. Comput. Chem. 4, 21–33 (2005)

    CAS  Google Scholar 

  9. D.C. Ghosh, R. Biswas, Int. J. Mol. Sci. 3, 87–113 (2002)

    CAS  Google Scholar 

  10. H. Tandon, T. Chakraborty, V. Suhag, J. Math. Chem. 57, 2142–2153 (2019)

    CAS  Google Scholar 

  11. D.C. Ghosh, N. Islam, Int. J. Quantum Chem. 110, 1206–1213 (2010)

    CAS  Google Scholar 

  12. N. Islam, D.C. Ghosh, Int. J. Quantum Chem. 111, 3556–3564 (2011)

    CAS  Google Scholar 

  13. H. Tandon, T. Chakraborty, V. Suhag, J. Struct. Chem. 60, 1725–1734 (2019)

    Google Scholar 

  14. J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity (Addison-Wesley, NY, 1993)

    Google Scholar 

  15. P. Politzer, P. Jin, J.S. Murray, J. Chem. Phys. 117, 8197–8202 (2002)

    CAS  Google Scholar 

  16. R.G. Parr, P.W. Ayers, R.F. Nalewajski, J. Phys. Chem. A 109, 3957–3959 (2005)

    CAS  PubMed  Google Scholar 

  17. W.L. Bragg, Lond. Edinb. Dubl. Phil. Mag. 40, 169–189 (1920)

    CAS  Google Scholar 

  18. J.C. Slater, Phys. Rev. 36, 57–64 (1930)

    CAS  Google Scholar 

  19. D.R. Hartree, The Calculation of Atomic Structures (Wiley, New York, 1957)

    Google Scholar 

  20. E. Clementi, D.L. Raimondi, J. Chem. Phys. 38, 2686–2689 (1963)

    CAS  Google Scholar 

  21. E. Clementi, D.L. Raimondi, W.P. Reinhardt, J. Chem. Phys. 47, 1300–1307 (1967)

    CAS  Google Scholar 

  22. D. Liberman, J.T. Waber, D.T. Cromer, Phys. Rev. 137, A27–A34 (1965)

    Google Scholar 

  23. J.T. Waber, D.T. Cromer, J. Chem. Phys. 42, 4116–4123 (1965)

    CAS  Google Scholar 

  24. C. Fisk, S. Fraga, Anal. Fis. 65, 135–137 (1969)

    CAS  Google Scholar 

  25. A.C. Larson, J.T. Waber, Self-Consistent Field Hartree Calculations for Atoms and Ions, Report LA-4297 (LOS Alamos, QSAEC, 1969)

    Google Scholar 

  26. S. Fraga, J. Karwowski, K.M.S. Saxena, Atom Data. Nucl. Data Tables 12, 467–477 (1973)

    CAS  Google Scholar 

  27. C.F. Fischer, At. Data Nucl. Data Tables 4, 301–399 (1972)

    CAS  Google Scholar 

  28. C.F. Fischer, At. Data Nucl. Data Tables 12, 87–99 (1973)

    CAS  Google Scholar 

  29. J.P. Desclaux, At. Data Nucl. Data Tables 12, 311–406 (1973)

    CAS  Google Scholar 

  30. B.M. Deb, R. Singh, N. Sukumar, J. Mol. Struct.: THEOCHEM 259, 121–139 (1992)

    Google Scholar 

  31. S. Nath, S. Bhattacharya, P.K. Chattaraj, J. Mol. Struct.: THEOCHEM 331, 267–279 (1995)

    CAS  Google Scholar 

  32. M.V. Putz, N. Russo, E. Sicilia, J. Phys. Chem. A 107, 5461–5465 (2003)

    CAS  Google Scholar 

  33. C. Froese, J. Chem. Phys. 45, 1417–1420 (1966)

    CAS  Google Scholar 

  34. C.W. Kammeyer, D.R. Whitman, J. Chem. Phys. 56, 4419–4421 (1972)

    CAS  Google Scholar 

  35. R.J. Boyd, J. Phys. B: Atom. Molec. Phys. 10, 2283–2291 (1977)

    CAS  Google Scholar 

  36. T. Chakraborty, K. Gazi, D.C. Ghosh, Mol. Phys. 108, 2081–2092 (2010)

    CAS  Google Scholar 

  37. J. Loschmidt, Sitzungsber. Kais. Akad. Wiss. Wien, Math. Naturwiss. Classe 52, 395-413 (1866)

  38. J. Loschmidt, Anz. Kais. Akad. Wiss. Wien, Math. Naturwiss. Classe 2, 162 (1865)

  39. L. Meyer, Ann Suppl. 7, 354 (1870)

    Google Scholar 

  40. V.M. Goldschmidt, Trans. Faraday Soc. 25, 253–283 (1929)

    CAS  Google Scholar 

  41. W.H. Zachariasen, Z. Kristallogr, Cryst. Mater. 80, 137–153 (1931)

    CAS  Google Scholar 

  42. W.H. Zachariasen, Phys. Rev. 73, 1104–1105 (1948)

    CAS  Google Scholar 

  43. L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, 1960)

    Google Scholar 

  44. W. Biltz, Ber. Dtsch. Chem. Ges. 68, A91–A108 (1935)

    Google Scholar 

  45. W. Biltz, Raumchemie der Festen Stoffe (Leopold Voss-Verlag, Leipzig, 1934)

    Google Scholar 

  46. A. Bondi, J. Phys. Chem. 70, 3006–3007 (1966)

    CAS  Google Scholar 

  47. A. Bondi, J. Phys. Chem. 68, 441–451 (1964)

    CAS  Google Scholar 

  48. S.S. Batsanov, Inorg. Mater. 37, 871–885 (2001)

    CAS  Google Scholar 

  49. R. Chauvin, J. Phys. Chem. 96, 9194–9197 (1992)

    CAS  Google Scholar 

  50. S. Alvarez, Dalton Trans. 42, 8617–8636 (2013)

    CAS  PubMed  Google Scholar 

  51. N. Islam, D.C. Ghosh, Open Spectrosc. J. 5, 13–25 (2011)

    CAS  Google Scholar 

  52. D.C. Ghosh, R. Biswas, T. Chakraborty, N. Islam, S.K. Rajak, J. Mol. Struct.: THEOCHEM 865, 60–67 (2008)

    CAS  Google Scholar 

  53. M. Rahm, R. Hoffmann, N.W. Ashcroft, Chem. Eur. J. 22, 14625–14632 (2016)

    CAS  PubMed  Google Scholar 

  54. P. Szarek, A. Chlebicki, W. Grochala, J. Phys. Chem. A 123, 682–692 (2019)

    CAS  PubMed  Google Scholar 

  55. C.K. Ingold, Chem. Rev. 15, 225–274 (1934)

    CAS  Google Scholar 

  56. C.G. Swain, C.B. Scott, J. Am. Chem. Soc. 75, 141–147 (1953)

    CAS  Google Scholar 

  57. J.O. Edwards, J. Am. Chem. Soc. 76, 1540–1547 (1954)

    CAS  Google Scholar 

  58. H. Mayr, M. Patz, Angew. Chem. Int. Ed. Engl. 33, 938–957 (1994)

    Google Scholar 

  59. L.R. Domingo, P. Pérez, Org. Biomol. Chem. 9, 7168–7175 (2011)

    CAS  PubMed  Google Scholar 

  60. S. Pratihar, S. Roy, J. Org. Chem. 76, 4219–4219 (2011)

    CAS  Google Scholar 

  61. H. Tandon, T. Chakraborty, V. Suhag, International Journal of Quantitative Structure-Property Relationships 4, 99–117 (2019)

    Google Scholar 

  62. P.K. Chattaraj, B. Maiti, J. Phys. Chem. A 105, 169–183 (2001)

    CAS  Google Scholar 

  63. Minitab 17 Statistical Software (2010) [Computer software] https://www.minitab.com. State College, PA. Minitab, Inc

  64. A. Kramida, Yu. Ralchenko, J. Reader, NIST ASD Team, NIST Atomic Spectra Database, Version 5.6.1, [Online] (2018). https://physics.nist.gov/asd [2019, April 4]. National Institute of Standards and Technology, Gaithersburg, MD

  65. G. Sproul, J. Chem. Educ. 78, 387–390 (2001)

    CAS  Google Scholar 

  66. R.S. Mulliken, J. Chem. Phys. 2, 782–793 (1934)

    CAS  Google Scholar 

  67. R.G. Pearson, Inorg. Chem. 27, 734–740 (1988)

    CAS  Google Scholar 

  68. S. Noorizadeh, E. Shakerzadh, J. Mol. Struct. 920, 110–113 (2009)

    CAS  Google Scholar 

  69. N.K. Ray, L. Samuels, R.G. Parr, J. Chem. Phys. 70, 3680–3684 (1979)

    CAS  Google Scholar 

  70. R.T. Sanderson, Science 114, 670–672 (1951)

    CAS  PubMed  Google Scholar 

  71. R.T. Sanderson, J. Am. Chem. Soc. 74, 272–274 (1952)

    CAS  Google Scholar 

  72. R.T. Sanderson, J. Chem. Educ. 29, 539–543 (1952)

    CAS  Google Scholar 

  73. R.T. Sanderson, Science 121, 207–208 (1955)

    CAS  PubMed  Google Scholar 

  74. A. Pasternak, Chem. Phys. 26, 101–112 (1977)

    CAS  Google Scholar 

  75. R.G. Parr, R.F. Borkman, J. Chem. Phys. 46, 3683–3685 (1967)

    CAS  Google Scholar 

  76. R.F. Borkman, R.G. Parr, J. Chem. Phys. 48, 1116–1126 (1968)

    CAS  Google Scholar 

  77. R.G. Parr, R.F. Borkman, J. Chem. Phys. 49, 1055–1058 (1968)

    CAS  Google Scholar 

  78. R.F. Borkman, G. Simons, R.G. Parr, J. Chem. Phys. 50, 58–65 (1969)

    CAS  Google Scholar 

  79. L.R. Murphy, T.L. Meek, A.L. Allred, L.C. Allen, J. Phys. Chem. A 104, 5867–5871 (2000)

    CAS  Google Scholar 

  80. R.F. Nalewajski, R.G. Parr, Proc. Natl. Acad. Sci. 97, 8879–8882 (2000)

    CAS  PubMed  Google Scholar 

  81. R.F.W. Bader, Chem. Rev. 91, 893–928 (1991)

    CAS  Google Scholar 

  82. D.C. Ghosh, T. Chakraborty, J. Mol. Struct.: THEOCHEM 906, 87–93 (2009)

    CAS  Google Scholar 

  83. F.J. Lovas, E. Tiemann, J. Phys. Chem. Ref. Data 3, 609–770 (1974)

    CAS  Google Scholar 

  84. N.K. Goh, L.S. Chia, J. Chem. Educ. 66, 747–749 (1989)

    Google Scholar 

  85. W.L. Masteulon, E.J. Slowinski, Chemical Principles (Saunders, London, 1977)

    Google Scholar 

  86. D.R. Lloyd, J. Chem. Educ. 63, 502–504 (1986)

    CAS  Google Scholar 

  87. J.P. Desclaux, Y.K. Kim, J. Phys. B Atom. Mol. Phys. 8, 1177–1189 (1975)

    CAS  Google Scholar 

  88. K.S. Pitzer, Acc. Chem. Res. 12, 271–276 (1979)

    CAS  Google Scholar 

  89. P. Pyykkö, J.P. Desclaux, Acc. Chem. Res. 12, 276–281 (1979)

    Google Scholar 

  90. P. Pyykkö, Chem. Rev. 88, 563–594 (1988)

    Google Scholar 

  91. L.J. Norrby, J. Chem. Educ. 68, 110–111 (1991)

    CAS  Google Scholar 

  92. P. Indelicato, J.P. Santos, S. Boucard, J.P. Desclaux, Eur. Phys. J. D 45, 155–170 (2007)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Presidency University, Bengaluru; Manipal University Jaipur, Jaipur and BML Munjal University, Gurugram for providing computational and research facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmoy Chakraborty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tandon, H., Ranjan, P., Chakraborty, T. et al. Computation of absolute radii of 103 elements of the periodic table in terms of nucleophilicity index. J Math Chem 58, 1025–1040 (2020). https://doi.org/10.1007/s10910-020-01117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-020-01117-2

Keywords

Navigation