Skip to main content
Log in

Metal-organic layers as reusable solid fluorination reagents and heterogeneous catalysts for aromatic fluorination

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Reusable solid fluorination reagents and heterogeneous catalysts are ideally suited for late-stage fluorination with fast and clean conversion and simplified work-up. Here we report Pd-functionalized two-dimensional metal-organic layers (MOLs) as solid reagents and heterogeneous catalysts to efficiently fluorinate a broad scope of aromatic compounds. Site isolation in the MOLs provides a unique opportunity to stabilize highly active F-containing species for the chemical conversion. A terpyridine (TPY)- based ligand on the MOL, together with a 2-chloro-1,10-phenanthroline (phenCl) as a co-ligand, chelates PdII to form a reactive center. After treatment with Selectfluor/H2O, an (N-fluoroxy)-(2-chloro)-phenanthrolinium [N-(FO)-phenCl+] moiety is produced from the co-ligand on the Pd center. This active species serves as a stochiometric solid fluorination reagent, which shows different regioselectivities and reactivities as compared to homogeneous catalysts that involves PdIII/IV-F intermediates in catalytic cycles. The MOLs can also be used as heterogeneous catalysts for fluorination using Selectfluor. This work highlights opportunities in using MOLs to stabilize unique active sites for late-stage fluorination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev.2008, 37, 320–330.

    CAS  Google Scholar 

  2. Müller, K.; Faeh, C.; Diederich, F. Fluorine in pharmaceuticals: Looking beyond intuition. Science2007, 317, 1881–1886.

    Google Scholar 

  3. Isanbor, C.; O' Hagan, D. Fluorine in medicinal chemistry: A review of anti-cancer agents. J. Fluorine Chem.2006, 127, 303–319.

    CAS  Google Scholar 

  4. Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. Applications of fluorine in medicinal chemistry. J. Med. Chem.2015, 58, 8315–8359.

    CAS  Google Scholar 

  5. Jeschke, P. The unique role of halogen substituents in the design of modern agrochemicals. Pest Manage. Sci.2010, 66, 10–27.

    CAS  Google Scholar 

  6. Jeschke, P. The unique role of fluorine in the design of active ingredients for modern crop protection. ChemBioChem2004, 5, 570–589.

    CAS  Google Scholar 

  7. Fujiwara, T.; O'Hagan, D. Successful fluorine-containing herbicide agrochemicals. J. Fluorine Chem.2014, 167, 16–29.

    CAS  Google Scholar 

  8. Preshlock, S.; Tredwell, M.; Gouverneur, V. 18F-labeling of arenes and heteroarenes for applications in positron emission tomography. Chem. Rev.2016, 116, 719–766.

    CAS  Google Scholar 

  9. Komar, G.; Seppänen, M.; Eskola, O.; Lindholm, P.; Grönroos, T. J.; Forsback, S.; Sipilä, H.; Evans, S. M.; Solin, O.; Minn, H. 18F-EF5: A new PET tracer for imaging hypoxia in head and neck cancer. J. Nucl. Med.2008, 49, 1944–1951.

    Google Scholar 

  10. Kazumata, K.; Dhawan, V.; Chaly, T.; Antonini, A.; Margouleff, C.; Belakhlef, A.; Neumeyer, J.; Eidelberg, D. Dopamine transporter imaging with fluorine-18-FPCIT and PET. J. Nucl. Med.1998, 39, 1521–1530.

    CAS  Google Scholar 

  11. Challapalli, A.; Aboagye, E. O. Positron emission tomography imaging of tumor cell metabolism and application to therapy response monitoring. Front. Oncol.2016, 6, 44.

    Google Scholar 

  12. Bohndiek, S. E.; Brindle, K. M. Imaging and ‘omic’ methods for the molecular diagnosis of cancer. Expert Rev. Mol. Diagn.2010, 10, 417–434.

    CAS  Google Scholar 

  13. Yerien, D. E.; Bonesi, S.; Postigo, A. Fluorination methods in drug discovery. Org. Biomol. Chem.2016, 14, 8398–8427.

    CAS  Google Scholar 

  14. Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W. The medicinal chemist's toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev.2016, 45, 546–576.

    CAS  Google Scholar 

  15. Campbell, M. G.; Ritter, T. Late-stage fluorination: From fundamentals to application. Org. Process Res. Dev.2014, 18, 474–480.

    CAS  Google Scholar 

  16. Mazzotti, A. R.; Campbell, M. G.; Tang, P. P.; Murphy, J. M.; Ritter, T. Palladium(III)-catalyzed fluorination of arylboronic acid derivatives. J. Am. Chem. Soc.2013, 135, 14012–14015.

    CAS  Google Scholar 

  17. Hull, K. L.; Anani, W. Q.; Sanford, M. S. Palladium-catalyzed fluorination of carbon-hydrogen bonds. J. Am. Chem. Soc.2006, 128, 7134–7135.

    CAS  Google Scholar 

  18. Grushin, V. V. The organometallic fluorine chemistry of palladium and rhodium: Studies toward aromatic fluorination. Acc. Chem. Res.2010, 43, 160–171.

    CAS  Google Scholar 

  19. Liu, W.; Groves, J. T. Manganese catalyzed C-H halogenation. Acc. Chem. Res.2015, 48, 1727–1735.

    CAS  Google Scholar 

  20. Huang, X. Y.; Bergsten, T. M.; Groves, J. T. Manganese-catalyzed late-stage aliphatic C-H azidation. J. Am. Chem. Soc.2015, 137, 5300–5303.

    CAS  Google Scholar 

  21. Teruo, U.; Masayuki, T. N,N'-difluoro-1,4-diazoniabicyclo[2.2.2] octane salts, highly reactive and easy-to-handle electrophilic fluorinating agents. Bull. Chem. Soc. Jpn.1996, 69, 2287–2295.

    Google Scholar 

  22. Nyffeler, P. T.; Durón, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C. H. Selectfluor: Mechanistic insight and applications. Angew. Chem., Int. Ed.2004, 44, 192–212.

    Google Scholar 

  23. Hara, S.; Monoi, M.; Umemura, R.; Fuse, C. IF5-pyridine-HF: Airand moisture-stable fluorination reagent. Tetrahedron2012, 68, 10145–10150.

    CAS  Google Scholar 

  24. Chu, L. L.; Qing, F. L. Oxidative trifluoromethylation andtrifluoromethylthiolation reactions using (trifluoromethyl)trimethylsilane as a nucleophilic CF3 source. Acc. Chem. Res.2014, 47, 1513–1522.

    CAS  Google Scholar 

  25. Zhu, Q. H.; Ji, D. Z.; Liang, T. T.; Wang, X. Y.; Xu, Y. G. Efficient palladium-catalyzed C-H fluorination of C(sp3)-H bonds: Synthesis of ß-fluorinated carboxylic acids. Org. Lett.2015, 17, 3798–3801.

    CAS  Google Scholar 

  26. Watson, D. A.; Su, M. J.; Teverovskiy, G.; Zhang, Y.; García-Fortanet, J.; Kinzel, T.; Buchwald, S. L. Formation of ArF from LPdAr(F): Catalytic conversion of aryl triflates to aryl fluorides. Science2009, 325, 1661–1664.

    CAS  Google Scholar 

  27. McMurtrey, K. B.; Racowski, J. M.; Sanford, M. S. Pd-catalyzed C-H fluorination with nucleophilic fluoride. Org. Lett.2012, 14, 4094–4097.

    CAS  Google Scholar 

  28. Liu, W.; Groves, J. T. Manganese-catalyzed oxidative benzylic C-H fluorination by fluoride ions. Angew. Chem., Int. Ed.2013, 52, 6024–6027.

    CAS  Google Scholar 

  29. Braun, M. G.; Doyle, A. G. Palladium-catalyzed allylic C-H fluorination. J. Am. Chem. Soc.2013, 135, 12990–12993.

    CAS  Google Scholar 

  30. Lee, E.; Kamlet, A. S.; Powers, D. C.; Neumann, C. N.; Boursalian, G. B.; Furuya, T.; Choi, D. C.; Hooker, J. M.; Ritter, T. A fluoridederived electrophilic late-stage fluorination reagent for PET imaging. Science2011, 334, 639–642.

    CAS  Google Scholar 

  31. Hebel, D.; Lerman, O.; Rozen, S. On the existence of acetyl hypofluorite. J. Fluorine Chem.1985, 30, 141–146.

    CAS  Google Scholar 

  32. Zhu, Q. L.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev.2014, 43, 5468–5512.

    CAS  Google Scholar 

  33. Zhou, H. C. J.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev.2014, 43, 5415–5418.

    CAS  Google Scholar 

  34. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature2003, 423, 705–714.

    CAS  Google Scholar 

  35. Ockwig, N. W.; Delgado-Friedrichs, O.; O'Keeffe, M.; Yaghi, O. M. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res.2005, 38, 176–182.

    CAS  Google Scholar 

  36. Inokuma, Y.; Kawano, M.; Fujita, M. Crystalline molecular flasks. Nat. Chem.2011, 3, 349–358.

    CAS  Google Scholar 

  37. Ferey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev.2008, 37, 191–214.

    CAS  Google Scholar 

  38. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science2002, 295, 469–472.

    CAS  Google Scholar 

  39. Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J.; Go, Y. B.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature2004, 427, 523–527.

    CAS  Google Scholar 

  40. Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev.2012, 112, 1196–1231.

    CAS  Google Scholar 

  41. Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev.2017, 46, 4774–4808.

    CAS  Google Scholar 

  42. Ranocchiari, M.; van Bokhoven, J. A. Catalysis by metal-organic frameworks: Fundamentals and opportunities. Phys. Chem. Chem. Phys.2011, 13, 6388–6396.

    CAS  Google Scholar 

  43. Mlinar, A. N.; Keitz, B. K.; Gygi, D.; Bloch, E. D.; Long, J. R.; Bell, A. T. Selective propene oligomerization with Nickel(II)-based metal-organic frameworks. ACS Catal.2014, 4, 717–721.

    CAS  Google Scholar 

  44. Ma, L. Q.; Abney, C.; Lin, W. B. Enantioselective catalysis with homochiral metal-organic frameworks. Chem. Soc. Rev.2009, 38, 1248–1256.

    CAS  Google Scholar 

  45. Liu, Y.; Xuan, W. M.; Cui, Y. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv. Mater.2010, 22, 4112–4135.

    CAS  Google Scholar 

  46. Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. B. T.; Hupp, J. T. Metal-organic framework materials as catalysts. Chem. Soc. Rev.2009, 38, 1450–1459.

    CAS  Google Scholar 

  47. Gascon, J.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X. Metal organic framework catalysis: Quo vadis? ACS Catal.2014, 4, 361–378.

    CAS  Google Scholar 

  48. Comito, R. J.; Fritzsching, K. J.; Sundell, B. J.; Schmidt-Rohr, K.; Dinca, M. Single-site heterogeneous catalysts for olefin polymerization enabled by cation exchange in a metal-organic framework. J. Am. Chem. Soc.2016, 138, 10232–10237.

    CAS  Google Scholar 

  49. Shekhah, O.; Liu, J.; Fischer, R. A.; Wöll, C. MOF thin films: Existing and future applications. Chem. Soc. Rev.2011, 40, 1081–1106.

    CAS  Google Scholar 

  50. Cao, L. Y.; Lin, Z. K.; Peng, F.; Wang, W. W.; Huang, R. Y.; Wang, C.; Yan, J. W.; Liang, J.; Zhang, Z. M.; Zhang, T. et al. Self-supporting metal–organic layers as single-site solid catalysts. Angew. Chem., Int. Ed.2016, 55, 4962–4966.

    CAS  Google Scholar 

  51. Bétard, A.; Fischer, R. A. Metal-organic framework thin films: From fundamentals to applications. Chem. Rev.2012, 112, 1055–1083.

    Google Scholar 

  52. Xu, R. Y.; Drake, T.; Lan, G. X.; Lin, W. B. Metal-organic layers catalyze photoreactions without pore size and diffusion limitations. Chem.–Eur. J.2018, 24, 15772–15776.

    CAS  Google Scholar 

  53. Xu, R. Y.; Cai, Z. X.; Lan, G. X.; Lin, W. B. Metal-organic layers efficiently catalyze photoinduced polymerization under visible light. Inorg. Chem.2018, 57, 10489–10493.

    CAS  Google Scholar 

  54. Yamamoto, K.; Li, J. K.; Garber, J. A. O.; Rolfes, J. D.; Boursalian, G. B.; Borghs, J. C.; Genicot, C.; Jacq, J.; vanGastel, M.; Neese, F. et al. Palladium-catalysed electrophilic aromatic C-H fluorination. Nature2018, 554, 511–514.

    CAS  Google Scholar 

  55. Testa, C.; Roger, J.; Fleurat-Lessard, P.; Hierso, J. C. Palladiumcatalyzed electrophilic C–H-bond fluorination: Mechanistic overview and supporting evidence. Eur. J. Org. Chem.2019, 2019, 233–253.

    CAS  Google Scholar 

  56. Jiang, Y. B.; Cao, L. Y.; Hu, X. F.; Ren, Z. K.; Zhang, C. K.; Wang, C. Simulating powder X-ray diffraction patterns of two-dimensional materials. Inorg. Chem.2018, 57, 15123–15132.

    CAS  Google Scholar 

  57. Khusnutdinova, J. R.; Rath, N. P.; Mirica, L. M. The aerobic oxidation of a Pd(II) dimethyl complex leads to selective ethane elimination from a Pd(III) intermediate. J. Am. Chem. Soc.2012, 134, 2414–2422.

    CAS  Google Scholar 

  58. Hindman, J. C.; Svirmickas, A.; Appelman, E. H. Proton and fluorine nuclear magnetic resonance observations on hypofluorous acid, HOF. J. Chem. Phys.1972, 57, 4542–4543.

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge funding support from the National Natural Science Foundation of China (NSFC) (Nos. 21671162 and 21721001) and the Ministry of Science and Technology of China (No. 2016YFA0200702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Zeng, L., Cao, L. et al. Metal-organic layers as reusable solid fluorination reagents and heterogeneous catalysts for aromatic fluorination. Nano Res. 14, 473–478 (2021). https://doi.org/10.1007/s12274-020-2698-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2698-8

Keywords

Navigation