Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Clonal tracking using embedded viral barcoding and high-throughput sequencing

Abstract

Embedded viral barcoding in combination with high-throughput sequencing is a powerful technology with which to track single-cell clones. It can provide clonal-level insights into cellular proliferation, development, differentiation, migration, and treatment efficacy. Here, we present a detailed protocol for a viral barcoding procedure that includes the creation of barcode libraries, the viral delivery of barcodes, the recovery of barcodes, and the computational analysis of barcode sequencing data. The entire procedure can be completed within a few weeks. This barcoding method requires cells to be susceptible to viral transduction. It provides high sensitivity and throughput, and enables precise quantification of cellular progeny. It is cost efficient and does not require any advanced skills. It can also be easily adapted to many types of applications, including both in vitro and in vivo experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experiment workflow.
Fig. 2: Comparing barcode extraction replicates.
Fig. 3: qPCR amplification of barcode.
Fig. 4: Optimizing the edit distance thresholds.
Fig. 5: Python pipeline outputs.

Similar content being viewed by others

Data availability

A sample dataset has been deposited in Figshare: https://doi.org/10.35092/yhjc.11374446. This dataset was used to generate Figs. 4 and 5.

Code availability

The Python scripts have been provided in the Supplementary Software of this paper. The code in this paper has been peer-reviewed.

References

  1. Lu, R., Neff, N. F., Quake, S. R. & Weissman, I. L. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat. Biotechnol. 29, 928–933 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dick, J. E., Magli, M. C., Huszar, D., Phillips, R. A. & Bernstein, A. Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell 42, 71–79 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Keller, G., Paige, C., Gilboa, E. & Wagner, E. F. Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature 318, 149–154 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Lemischka, I. R., Raulet, D. H. & Mulligan, R. C. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45, 917–927 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Schepers, K. et al. Dissecting T cell lineage relationships by cellular barcoding. J. Exp. Med 205, 2309–2318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lyne, A.-M. et al. A track of the clones: new developments in cellular barcoding. Exp. Hematol. 68, 15–20 (2018).

    Article  PubMed  Google Scholar 

  7. Naik, S. H. et al. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 496, 229–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Cheung, A. M. S. et al. Analysis of the clonal growth and differentiation dynamics of primitive barcoded human cord blood cells in NSG mice. Blood 122, 3129–3137 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nguyen, L. V. et al. Clonal analysis via barcoding reveals diverse growth and differentiation of transplanted mouse and human mammary stem cells. Cell Stem Cell 14, 253–263 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Gerrits, A. et al. Cellular barcoding tool for clonal analysis in the hematopoietic system. Blood 115, 2610–2618 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen, L. et al. Functional compensation between hematopoietic stem cell clones in vivo. EMBO Rep. 19, e45702(2018).

  12. Brewer, C., Chu, E., Chin, M. & Lu, R. Transplantation dose alters the differentiation program of hematopoietic stem cells. Cell Rep 15, 1848–1857 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, C. et al. Clonal tracking of rhesus macaque hematopoiesis highlights a distinct lineage origin for natural killer cells. Cell Stem Cell 14, 486–499 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu, R., Czechowicz, A., Seita, J., Jiang, D. & Weissman, I. L. Clonal-level lineage commitment pathways of hematopoietic stem cells in vivo. Proc. Natl Acad. Sci. USA 116, 1447–1456 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bystrykh, L. V., de Haan, G. & Verovskaya, E. Barcoded vector libraries and retroviral or lentiviral barcoding of hematopoietic stem cells in Hematopoietic Stem Cell Protocols (eds Bunting, K. D. & Qu, C.-K.) 345–360 (Springer New York, 2014).

  16. Bystrykh, L. V. & Belderbos, M. E. Clonal analysis of cells with cellular barcoding: when numbers and sizes matter in Stem Cell Heterogeneity: Methods and Protocols (ed Turksen, K.) 57–89 (Springer New York, 2016).

  17. Naik, S. H., Schumacher, T. N. & Perié, L. Cellular barcoding: a technical appraisal. Exp. Hematol. 42, 598–608 (2014).

    Article  PubMed  Google Scholar 

  18. Thielecke, L. et al. Limitations and challenges of genetic barcode quantification. Sci. Rep 7, 43249 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Woodworth, M. B., Girskis, K. M. & Walsh, C. A. Building a lineage from single cells: genetic techniques for cell lineage tracking. Nat. Rev. Genet. 18, 230 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kebschull, J. M. & Zador, A. M. Cellular barcoding: lineage tracing, screening and beyond. Nat. Methods 15, 871–879 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen, L. V. et al. DNA barcoding reveals diverse growth kinetics of human breast tumour subclones in serially passaged xenografts. Nat. Commun. 5, 5871 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen, L. V. et al. Barcoding reveals complex clonal dynamics of de novo transformed human mammary cells. Nature 528, 267 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 aystem. Science 343, 80 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Dykstra, B. et al. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1, 218–229 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Sieburg, H. B. et al. The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 107, 2311–2316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Weber, K., Thomaschewski, M., Benten, D. & Fehse, B. RGB marking with lentiviral vectors for multicolor clonal cell tracking. Nat. Protoc. 7, 839 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Cornils, K. et al. Multiplexing clonality: combining RGB marking and genetic barcoding. Nucleic Acids Res. 42, e56–e56 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Rios, A. C., Fu, N. Y., Lindeman, G. J. & Visvader, J. E. In situ identification of bipotent stem cells in the mammary gland. Nature 506, 322 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Schmidt, M. et al. High-resolution insertion-site analysis by linear amplification–mediated PCR (LAM-PCR). Nat. Methods 4, 1051 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Harkey, M. A. et al. Multiarm high-throughput integration site detection: limitations of LAM-PCR technology and optimization for clonal analysis. Stem Cells Dev 16, 381–392 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Wu, C. et al. High efficiency restriction enzyme-free linear amplification-mediated polymerase chain reaction approach for tracking lentiviral integration sites does not abrogate retrieval bias. Hum. Gene Ther. 24, 38–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Wu, C. et al. Tracking retroviral-integrated clones with modified non-restriction enzyme LAM-PCR technology. Mol. Ther. 19, S45 (2011).

    Google Scholar 

  36. Zhou, S. et al. Quantitative shearing linear amplification polymerase chain reaction: an improved method for quantifying lentiviral vector insertion sites in transplanted hematopoietic cell systems. Hum. Gene Ther. Methods 26, 4–12 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  37. Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pei, W. et al. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548, 456–460 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frieda, K. L. et al. Synthetic recording and in situ readout of lineage information in single cells. Nature 541, 107 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kalhor, R. et al. Developmental barcoding of whole mouse via homing CRISPR. Science 361, eaat9804 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rüfer, A. W. & Sauer, B. Non-contact positions impose site selectivity on Cre recombinase. Nucleic Acids Res 30, 2764–2771 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shen, M. W. et al. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 563, 646–651 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 473–478 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Osorio, F. G. et al. Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis. Cell Rep. 25, 2308–2316.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chapal-Ilani, N. et al. Comparing algorithms that reconstruct cell lineage trees utilizing information on microsatellite mutations. PLoS Comput. Biol. 9, e1003297 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wasserstrom, A. et al. Reconstruction of cell lineage trees in mice. PLoS ONE 3, e1939 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McKenzie, J. L., Gan, O. I., Doedens, M., Wang, J. C. Y. & Dick, J. E. Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. Nat. Immunol. 7, 1225 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Gonzalez-Murillo, A., Lozano, M. L., Montini, E., Bueren, J. A. & Guenechea, G. Unaltered repopulation properties of mouse hematopoietic stem cells transduced with lentiviral vectors. Blood 112, 3138–3147 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu, C. et al. Clonal expansion and compartmentalized maintenance of rhesus macaque NK cell subsets. Sci. Immunol. 3, aat9781 (2018).

    Article  Google Scholar 

  50. Bystrykh, L. V., Verovskaya, E., Zwart, E., Broekhuis, M. & de Haan, G. Counting stem cells: methodological constraints. Nat. Methods 9, 567 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Merino, D. et al. Barcoding reveals complex clonal behavior in patient-derived xenografts of metastatic triple negative breast cancer. Nat. Commun. 10, 766 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guernet, A. et al. CRISPR-barcoding for intratumor genetic heterogeneity modeling and functional analysis of oncogenic driver mutations. Mol. Cell 63, 526–538 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Verovskaya, E. et al. Heterogeneity of young and aged murine hematopoietic stem cells revealed by quantitative clonal analysis using cellular barcoding. Blood 122, 523–532 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Thielecke, L., Cornils, K. & Glauche, I. genBaRcode: a comprehensive R package for genetic barcode analysis. Bioinformatics https://doi.org/10.1093/bioinformatics/btz872 (2019).

Download references

Acknowledgements

We thank all members of the Lu lab for helping to optimize the protocol and C. Lytal for help editing the text. We thank the USC Stem Cell Flow Cytometry Facility and CHLA Sequencing Core for technical support. This research was funded primarily by a National Institutes of Health (NIH) R00 early investigator grant (NIH-R00-HL113104) and R01 grants (R01HL135292 and R01HL138225). R.L. is a Scholar of the Leukemia & Lymphoma Society and a Richard N. Merkin Assistant Professor. The project described was supported in part by award no. P30CA014089 from the National Cancer Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

R.L. conceived and developed the protocol. C.B., D.J., J.C., and A.N. optimized the barcode extraction protocol. D.J. and J.E. improved the Python code for analyzing high-throughput sequencing data. C.B., D.J., and R.L. prepared the manuscript. J.C. and A.N. provided assistance in manuscript text preparation.

Corresponding author

Correspondence to Rong Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Leïla Périé and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Lu, R., Neff, N. R., Quake, S. R. & Weissman, I. L. Nat. Biotechnol. 29, 928–933 (2011): https://doi.org/10.1038/nbt.1977

Nguyen, L. et al. EMBO Rep. 19, e45702 (2018): https://doi.org/10.15252/embr.201745702

Brewer, C., Chu, E., Chin, M. & Lu, R. Cell Rep. 15, 1848–1857 (2016): https://doi.org/10.1016/j.celrep.2016.04.061

Supplementary information

Reporting Summary

Supplementary Software

The software for data analysis (Steps 121–127)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bramlett, C., Jiang, D., Nogalska, A. et al. Clonal tracking using embedded viral barcoding and high-throughput sequencing. Nat Protoc 15, 1436–1458 (2020). https://doi.org/10.1038/s41596-019-0290-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0290-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing