Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Monitoring protein communities and their responses to therapeutics

Abstract

Most therapeutics are designed to alter the activities of proteins. From metabolic enzymes to cell surface receptors, connecting the function of a protein to a cellular phenotype, to the activity of a drug and to a clinical outcome represents key mechanistic milestones during drug development. Yet, even for therapeutics with exquisite specificity, the sequence of events following target engagement can be complex. Interconnected communities of structural, metabolic and signalling proteins modulate diverse downstream effects that manifest as interindividual differences in efficacy, adverse effects and resistance to therapy. Recent advances in mass spectrometry proteomics have made it possible to decipher these complex relationships and to understand how factors such as genotype, cell type, local environment and external perturbations influence them. In this Review, we explore how proteomic technologies are expanding our understanding of protein communities and their responses to large- and small-molecule therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proteins function within multiple protein communities.
Fig. 2: Protein communities from the prism of mass spectrometry-based proteomics.
Fig. 3: Proteomic approaches for basic biology and drug discovery.

Similar content being viewed by others

References

  1. Milo, R. What is the total number of protein molecules per cell volume? A call to rethink some published values. Bioessays 35, 1050–1055 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Klijn, C. et al. A comprehensive transcriptional portrait of human cancer cell lines. Nat. Biotechnol. 33, 306–312 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Nagaraj, N. et al. Deep proteome and transcriptome mapping of a human cancer cell line. Mol. Syst. Biol. 7, 548 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Kim, M.-S. et al. A draft map of the human proteome. Nature 509, 575–581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bekker-Jensen, D. B. et al. An optimized shotgun strategy for the rapid generation of comprehensive human proteomes. Cell Syst. 4, 587–599 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wis´niewski, J. R., Hein, M. Y., Cox, J. & Mann, M. A ‘proteomic ruler’ for protein copy number and concentration estimation without spike-in standards. Mol. Cell. Proteom. 13, 3497–3506 (2014).

    Article  CAS  Google Scholar 

  8. Cooper, H. L., Park, M. H. & Folk, J. E. Posttranslational formation of hypusine in a single major protein occurs generally in growing cells and is associated with activation of lymphocyte growth. Cell 29, 791–797 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Green, D. R. & Kroemer, G. Cytoplasmic functions of the tumor suppressor p53. Nature 458, 1127 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huangyang, P. & Simon, M. C. Hidden features: exploring the non-canonical functions of metabolic enzymes. Dis. Model. Mech. 11, dmm033365 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Loh, K. H. et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell 166, 1295–1307 (2016). This study is the first to use proximity labelling to study the synaptic-cleft proteome in neuron cultures and to report proteins specific to excitatory versus inhibitory synapses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zuchero, Y. J. Y. et al. Discovery of novel blood–brain barrier targets to enhance brain uptake of therapeutic antibodies. Neuron 89, 70–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Itzhak, D. N., Tyanova, S., Cox, J. & Borner, G. H. Global, quantitative and dynamic mapping of protein subcellular localization. eLife 5, e16950 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 422, 347–355 (2016).

    Article  CAS  Google Scholar 

  16. Paulo, J. A., Mancias, J. D. & Gygi, S. P. Proteome-wide protein expression profiling across five pancreatic cell lines. Pancreas 46, 690–698 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Giansanti, P., Tsiatsiani, L., Low, T. Y. & Heck, A. J. R. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat. Protoc. 11, 993–1006 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Huttlin, E. L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174–1189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sharma, K. et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 8, 1583–1594 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Schölz, C. et al. Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat. Biotechnol. 33, 415–423 (2015).

    Article  PubMed  CAS  Google Scholar 

  22. Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325–340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rose, C. M. et al. Highly multiplexed quantitative mass spectrometry analysis of ubiquitylomes. Cell Syst. 3, 395–403 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hornbeck, P. V. et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43, D512–D520 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qu, Z. et al. Proteomic quantification and site-mapping of S-nitrosylated proteins using isobaric iodoTMT reagents. J. Proteome Res. 13, 3200–3211 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Erickson, B. K. et al. A strategy to combine sample multiplexing with targeted proteomics assays for high-throughput protein signature characterization. Mol. Cell 65, 361–370 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huttlin, E. L. et al. Architecture of the human interactome defines protein communities and disease networks. Nature 545, 505–509 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huttlin, E. L. et al. The bioplex network: a systematic exploration of the human interactome. Cell 162, 425–440 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bakalarski, C. E. & Kirkpatrick, D. S. A biologist’s field guide to multiplexed quantitative proteomics. Mol. Cell. Proteom. 15, 1489–1497 (2016).

    Article  CAS  Google Scholar 

  31. Lapek Jr, J. D. et al. Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities. Nat. Biotechnol. 35, 983–989 (2017). This study uses high-throughput quantitative proteomics to define predictors of the sensitivity of breast cancer cell lines to a panel of 195 drugs, based on dysregulation of protein–protein interactions.

    Article  CAS  Google Scholar 

  32. Klaeger, S. et al. The target landscape of clinical kinase drugs. Science 358, eaan4368 (2017). This study reports a comprehensive list of targets for 243 clinical kinase inhibitors through chemical proteome profiling in four cell lines.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Esbroeck, A. C. M van et al. Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474. Science 356, 1084–1087 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Rhee, H.-W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dunkley, T. P. J., Watson, R., Griffin, J. L., Dupree, P. & Lilley, K. S. Localization of organelle proteins by isotope tagging (LOPIT). Mol. Cell. Proteom. 3, 1128–1134 (2004).

    Article  CAS  Google Scholar 

  37. Orre, L. M. et al. SubCellBarCode: proteome-wide mapping of protein localization and relocalization. Mol. Cell 73, 166–182 (2019). This study applies tandem mass tag (TMT)-based quantification for organelle correlation profiling in order to assess changes in protein localization upon the inhibition of EGFR signalling in lung cancer cells.

    Article  CAS  PubMed  Google Scholar 

  38. Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).

    Article  PubMed  CAS  Google Scholar 

  39. Gygi, S. P., Rochon, Y., Franza, B. R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Pettersson, M. & Crews, C. M. PROteolysis TArgeting chimeras (PROTACs) — past, present and future. Drug Discov. Today Technol. 31, 15–27 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kesarwala, A. H., Samrakandi, M. M. & Piwnica-Worms, D. Proteasome inhibition blocks ligand-induced dynamic processing and internalization of epidermal growth factor receptor via altered receptor ubiquitination and phosphorylation. Cancer Res. 69, 976–983 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Lemmon, M. A., Schlessinger, J. & Ferguson, K. M. The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb. Perspect. Biol. 6, a020768 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Francavilla, C. et al. Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking. Nat. Struct. Mol. Biol. 23, 608–618 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Loibl, S. & Gianni, L. HER2-positive breast cancer. Lancet 389, 2415–2429 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Olsen, J. V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Bose, R. et al. Phosphoproteomic analysis of Her2/neu signaling and inhibition. Proc. Natl Acad. Sci. USA 103, 9773–9778 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rexer, B. N. et al. Phosphoproteomic mass spectrometry profiling links Src family kinases to escape from HER2 tyrosine kinase inhibition. Oncogene 30, 4163–4174 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Choudhary, C. et al. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol. Cell 36, 326–339 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Guo, A. et al. Signaling networks assembled by oncogenic EGFR and c-Met. Proc. Natl Acad. Sci. USA 105, 692–697 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pan, C., Olsen, J. V., Daub, H. & Mann, M. Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol. Cell. Proteom. 8, 2796–2808 (2009).

    Article  CAS  Google Scholar 

  52. Zhuang, G. et al. Phosphoproteomic analysis implicates the mTORC2–FoxO1 axis in VEGF signaling and feedback activation of receptor tyrosine kinases. Sci. Signal. 6, ra25 (2013).

    Article  PubMed  CAS  Google Scholar 

  53. Yamaguchi, H., Chang, S.-S., Hsu, J. L. & Hung, M.-C. Signaling cross-talk in the resistance to HER family receptor targeted therapy. Oncogene 33, 1073–1081 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Boyer, A. P., Collier, T. S., Vidavsky, I. & Bose, R. Quantitative proteomics with siRNA screening identifies novel mechanisms of trastuzumab resistance in HER2 amplified breast cancers. Mol. Cell. Proteom. 12, 180–193 (2013).

    Article  CAS  Google Scholar 

  55. Liu, L. et al. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res. 69, 6871–6878 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, W. et al. Quantitative proteomics profiling reveals activation of mTOR pathway in trastuzumab resistance. Oncotarget 8, 45793–45806 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li, J. et al. A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nat. Chem. Biol. 6, 291–299 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Duncan, J. S. et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple negative breast cancer. Cell 149, 307–321 (2012). This study uses multiplexed kinase inhibitor beads and mass spectrometry (MIB-MS) to define kinome reprogramming in triple-negative breast cancer cell lines treated with the MEK inhibitor AZD6244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stuhlmiller, T. J. et al. Inhibition of lapatinib-induced kinome reprogramming in ERBB2-positive breast cancer by targeting BET family bromodomains. Cell Rep. 11, 390–404 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McNeill, R. S. et al. Combination therapy with potent PI3K and MAPK inhibitors overcomes adaptive kinome resistance to single agents in preclinical models of glioblastoma. Neuro-Oncol. 19, 1469–1480 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ciceri, P. et al. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nat. Chem. Biol. 10, 305–312 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lappano, R. & Maggiolini, M. G protein-coupled receptors: novel targets for drug discovery in cancer. Nat. Rev. Drug. Discov. 10, 47–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Thompson, G. L., Kelly, E., Christopoulos, A. & Canals, M. Novel GPCR paradigms at the μ-opioid receptor. Br. J. Pharmacol. 172, 287–296 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Gundry, J., Glenn, R., Alagesan, P. & Rajagopal, S. A practical guide to approaching biased agonism at G protein coupled receptors. Front. Neurosci. 11, 17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tsvetanova, N. G. et al. G protein–coupled receptor endocytosis confers uniformity in responses to chemically distinct ligands. Mol. Pharmacol. 91, 145–156 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Williams, G. R. et al. Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods 92, 36–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Ong, S.-E. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteom. 1, 376–386 (2002).

    Article  CAS  Google Scholar 

  68. Christensen, G. L. et al. Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol. Cell. Proteom. 9, 1540–1553 (2010).

    Article  CAS  Google Scholar 

  69. Bantscheff, M. et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat. Biotechnol. 29, 255–265 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Molina, D. M. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013). This seminal study describes the development and application of cellular thermal shift assay (CETSA) for evaluating target engagement by a drug in intact cells.

    Article  CAS  Google Scholar 

  71. Franken, H. et al. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat. Protoc. 10, 1567–1593 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Savitski, M. M. et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346, 1255784 (2014). This study builds on the CETSA assay by incorporating TMT and quantitative mass spectrometry for proteome-wide analysis of on- and off-target drug effects.

    Article  PubMed  CAS  Google Scholar 

  73. Kerbrat, A. et al. Acute neurologic disorder from an inhibitor of fatty acid amide hydrolase. N. Engl. J. Med. 375, 1717–1725 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Arastu-Kapur, S. et al. Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events. Clin. Cancer Res. 17, 2734–2743 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Sumi, N. J., Kuenzi, B. M., Knezevic, C. E., Rix, L. L. R. & Rix, U. Chemoproteomics reveals novel protein and lipid kinase targets of clinical CDK4/6 inhibitors in lung cancer. ACS Chem. Biol. 10, 2680–2686 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Muslin, A. J., Tanner, J. W., Allen, P. M. & Shaw, A. S. Interaction of 14–3–3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889–897 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Ramakrishnan, G. et al. AKT and 14-3-3 regulate Notch4 nuclear localization. Sci. Rep. 5, 8782 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kanai, F. et al. TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J. 19, 6778–6791 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, A. H. et al. Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Mol. Cell Biol. 20, 6904–6912 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mezzadra, R. et al. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 549, 106–110 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Burr, M. L. et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549, 101–105 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jahan, A. S. et al. Usp12 stabilizes the T-cell receptor complex at the cell surface during signaling. Proc. Natl Acad. Sci. USA 113, E705–E714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim, J. M. & Chen, D. S. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann. Oncol. 27, 1492–1504 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Carvalho, A. S., Molina, H. & Matthiesen, R. New insights into functional regulation in MS-based drug profiling. Sci. Rep. 6, srep18826 (2016).

    Article  CAS  Google Scholar 

  85. Foster, L. J. et al. A mammalian organelle map by protein correlation profiling. Cell 125, 187–199 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Geladaki, A. et al. Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics. Nat. Commun. 10, 331 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Uezu, A. et al. Identification of an elaborate complex mediating postsynaptic inhibition. Science 353, 1123–1129 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tao, C.-L. et al. Differentiation and characterization of excitatory and inhibitory synapses by cryo-electron tomography and correlative microscopy. J. Neurosci. 38, 1493–1510 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kalkat, M. et al. MYC protein interactome profiling reveals functionally distinct regions that cooperate to drive tumorigenesis. Mol. Cell 72, 836–848.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Adhikari, H. & Counter, C. M. Interrogating the protein interactomes of RAS isoforms identifies PIP5K1A as a KRAS-specific vulnerability. Nat. Commun. 9, 3646 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Reitsma, J. M. et al. Composition and regulation of the cellular repertoire of SCF ubiquitin ligases. Cell 171, 1326–1339 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tackett, A. J. et al. I-DIRT, a general method for distinguishing between specific and nonspecific protein interactions. J. Proteome Res. 4, 1752–1756 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Joshi, P. et al. The functional interactome landscape of the human histone deacetylase family. Mol. Syst. Biol. 9, 672 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Phelan, J. D. et al. A multiprotein supercomplex controlling oncogenic signaling in lymphoma. Nature 560, 387–391 (2018). This study uses SILAC-based quantification to characterize a multiprotein subcomplex regulating BCR signalling in ibrutinib-responsive diffuse large B cell lymphoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Couzens, A. et al. Protein interaction network of the mammalian hippo pathway reveals mechanisms of kinase-phosphatase interactions. Sci. Signal. 6, rs15 (2013).

    Article  PubMed  CAS  Google Scholar 

  96. Kim, B. R. et al. Identification of the SOX2 interactome by BioID reveals EP300 as a mediator of SOX2-dependent squamous differentiation and lung squamous cell carcinoma growth. Mol. Cell. Proteom. 16, 1864–1888 (2017).

    Article  CAS  Google Scholar 

  97. De Munter, S. et al. Split-BioID: a proximity biotinylation assay for dimerization-dependent protein interactions. FEBS Lett. 591, 415–424 (2017).

    Article  PubMed  CAS  Google Scholar 

  98. Schopp, I. M. et al. Split-BioID a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes. Nat. Commun. 8, 15690 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Titeca, K. et al. Analyzing trapped protein complexes by Virotrap and SFINX. Nat. Protoc. 12, 881–898 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Eyckerman, S. et al. Trapping mammalian protein complexes in viral particles. Nat. Commun. 7, 11416 (2016). This study describes a novel approach for identifying membrane–protein interactions and small-molecule binders by trapping them within viral-like particles (Virotrap).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Steklov, M. et al. Mutations in LZTR1 drive human disease by dysregulating RAS ubiquitination. Science 362, 1177–1182 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Winter, G. E. et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Imami, K. et al. Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol. Cell. Proteom. 11, 1741–1757 (2012).

    Article  CAS  Google Scholar 

  105. Kirkpatrick, D. S. et al. Phosphoproteomic characterization of DNA damage response in melanoma cells following MEK/PI3K dual inhibition. Proc. Natl Acad. Sci. USA 110, 19426–19431 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wu, Y. L. et al. Dual inhibition of PI3K/AKT and MEK/ERK pathways induces synergistic antitumor effects in diffuse intrinsic pontine glioma cells. Transl Oncol. 10, 221–228 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Piunti, A. et al. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat. Med. 23, 493–500 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mohammad, F. et al. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat. Med. 23, 483–492 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Sacco, F. et al. Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat. Commun. 7, 13250 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Giddey, A. D. et al. A temporal proteome dynamics study reveals the molecular basis of induced phenotypic resistance in mycobacterium smegmatis at sub-lethal rifampicin concentrations. Sci. Rep. 73, 43858 (2017).

    Article  Google Scholar 

  111. Burslem, G. M. et al. The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chem. Biol. 25, 67–77.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Sakamoto, K. M. et al. Development of protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell. Proteom. 2, 1350–1358 (2003).

    Article  CAS  Google Scholar 

  113. Paek, J. et al. Multidimensional tracking of GPCR signaling via peroxidase-catalyzed proximity labeling. Cell 169, 338–349.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lobingier, B. T. et al. An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169, 350–360 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ordureau, A. et al. Dynamics of PARKIN-dependent mitochondrial ubiquitylation in induced neurons and model systems revealed by digital snapshot proteomics. Mol. Cell 70, 211–227 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen, W. W., Freinkman, E., Wang, T., Birsoy, K. & Sabatini, D. M. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell 166, 1324–1337 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Weekes, M. P. et al. Quantitative temporal viromics: an approach to investigate host–pathogen interaction. Cell 157, 1460–1472 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Beltran, P. M., Mathias, R. A. & Cristea, I. M. A portrait of the human organelle proteome in space and time during cytomegalovirus infection. Cell Syst. 3, 361–373 (2016).

    Article  CAS  Google Scholar 

  119. Li, J. et al. Spatiotemporal profile of postsynaptic interactomes integrates components of complex brain disorders. Nat. Neurosci. 20, 1150–1161 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Devaux, S. et al. Proteomic analysis of the spatio-temporal based molecular kinetics of acute spinal cord injury identifies a time- and segment-specific window for effective tissue repair. Mol. Cell. Proteom. 15, 2641–2670 (2016).

    Article  CAS  Google Scholar 

  121. Liu, J. J. et al. In vivo brain GPCR signaling elucidated by phosphoproteomics. Science 360, eaao4927 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Brown, H. A., Thomas, P. G. & Lindsley, C. W. Targeting phospholipase D in cancer, infection and neurodegenerative disorders. Nat. Rev. Drug Discov. 16, 351–367 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu, Q. et al. A proximity-tagging system to identify membrane protein–protein interactions. Nat. Methods 15, 715–722 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Tian, R. et al. Combinatorial proteomic analysis of intercellular signaling applied to the CD28 T-cell costimulatory receptor. Proc. Natl Acad. Sci. USA 112, E1594–E1603 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tape, C. J. et al. Oncogenic KRAS regulates tumor cell signaling via stromal reciprocation. Cell 165, 910–920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Naba, A., Clauser, K. R., Lamar, J. M., Carr, S. A. & Hynes, R. O. Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. eLife 3, e01308 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Wang, X. et al. Breast tumors educate the proteome of stromal tissue in an individualized but coordinated manner. Sci. Signal. 10, eaam8065 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Bamberger, C. et al. Deducing the presence of proteins and proteoforms in quantitative proteomics. Nat. Commun. 9, 2320 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Thompson, A. et al. Tandem mass tags:  a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Kirkpatrick, D. S., Gerber, S. A. & Gygi, S. P. The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35, 265–273 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Gillet, L. C. et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteom. 11, O111.016717 (2012).

    Article  CAS  Google Scholar 

  132. Zheng, Y. et al. Temporal regulation of EGF signalling networks by the scaffold protein Shc1. Nature 499, 166–171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Reddy, R. J. et al. Early signaling dynamics of the epidermal growth factor receptor. Proc. Natl Acad. Sci. USA 113, 3114–3119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dürnberger, G. et al. Global analysis of muscle-specific kinase signaling by quantitative phosphoproteomics. Mol. Cell. Proteom. 13, 1993–2003 (2014).

    Article  CAS  Google Scholar 

  135. Bryson, B. D. & White, F. M. Quantitative profiling of lysine acetylation reveals dynamic crosstalk between receptor tyrosine kinases and lysine acetylation. PLOS ONE 10, e0126242 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Akimov, V., G. Rigbolt, K. T., M. Nielsen, M. & Blagoev, B. Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics. Mol. Biosyst. 7, 3223–3233 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Nelson, D. E. et al. Oscillations in NF-κB signaling control the dynamics of gene expression. Science 306, 704–708 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Tian, B., Nowak, D. E. & Brasier, A. R. A TNF-induced gene expression program under oscillatory NF-κB control. BMC Genomics 6, 137 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank members of the MPL group for their input and support.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Donald S. Kirkpatrick.

Ethics declarations

Competing interests

H.G.B. and D.S.K. are employees of Genentech Inc., a wholly owned subsidiary of Roche. D.S.K. is a shareholder in Roche.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Spectral counting

Quantitative analysis based on comparing the total number of spectra identified per protein in a mass spectrometry analysis.

Multiplexed isobaric tagging

Mass spectrometry (MS)-based quantification approach, in which labelled peptides from multiple samples are mixed together and analysed by mass spectrometer. Upon peptide fragmentation, reporter ions of different masses are released from the isobaric tags, and their relative intensities are measured within individual MS2/MS3 scan events.

Chemoproteomics

Proteomics approaches that use chemical probes to elucidate small-molecule–protein interactions in the proteome.

Proximity labelling

Proteomics approaches that use genetically engineered enzymes for the labelling and enrichment of proteins within subcellular regions and protein communities.

Phosphoproteomics

Proteomics approaches used for the characterization of proteins post-translationally modified with a phosphate group by kinase enzymes.

Thermal-shift assay

A method used to quantify changes in protein stability under thermal denaturation in response to different treatments or conditions, such as binding of a small molecule.

Synaptic cleft

Space or gap at the synapse between a neuron and an effector cell (such as a neuron or a muscle cell).

Postsynaptic density

Protein-dense compartment at the postsynaptic membrane of a synapse between two neurons.

Xenobiotics

Substances that are foreign to the biological system.

BioID

A mass spectrometry-based method for studying the associations of a protein of interest fused to a biotin ligase that labels other proteins in its close proximity.

Single-shot mass spectrometry

A mass spectrometry experimental setup wherein single sample injections are performed, as opposed to multiple injections of fractionated peptide mixtures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budayeva, H.G., Kirkpatrick, D.S. Monitoring protein communities and their responses to therapeutics. Nat Rev Drug Discov 19, 414–426 (2020). https://doi.org/10.1038/s41573-020-0063-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-020-0063-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research