Skip to main content

Advertisement

Log in

The radio-protective effect of rosmarinic acid against mobile phone and Wi-Fi radiation-induced oxidative stress in the brains of rats

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Rosmarinus officinalis L. is an aromatic perennial herb from which rosmarinic acid (RA) can be extracted. This research was conducted to assess the effectiveness of RA against radio frequency (RF) radiation-induced oxidative stress due to 915 MHz (mobile phone) and 2450 MHz (Wi-Fi) frequencies in rats.

Methods

The animals were separated into six groups, including group 1 receiving normal saline (NS), group 2 (NS/Wi-Fi) and group 4 (NS/mobile), which received NS plus 60 min/day of exposure to the electromagnetic radiation (EMR) for 1 month, group 3 (RA/Wi-Fi) and group 5 (RA/mobile) received RA (20 mg/kg/day, po) plus 60 min/day of EMR, and group 6 (RA) received only RA.

Results

There was a significant elevation of protein carbonylation (PC), nitric oxide (NO) and malondialdehyde (MDA) and significant reduction in glutathione (GSH), glutathione peroxidase (GPx), total antioxidant capacity (TAC), superoxide dismutase (SOD) and catalase (CAT) in the RF radiation-exposed rats’ brain compared to the control group. RA reduced the levels of NO, PC and MDA and it also elevated the TAC, GPx, SOD, CAT and GSH levels in the rats’ brains in the RA/Wi-Fi and RA/mobile groups compared to the NS/Wi-Fi and NS/mobile groups, respectively.

Conclusion

It can be concluded that RA can be considered a useful candidate for protecting brain tissues against RF radiation-induced oxidative stress at 915 and 2450 MHz frequencies through ameliorative effects on the antioxidant enzyme activities and oxidative stress indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chavdoula ED, Panagopoulos DJ, Margaritis LH. Comparison of biological effects between continuous and intermittent exposure to GSM-900-MHz mobile phone radiation: detection of apoptotic cell-death features. Mutat Res. 2010;700:51–61.

    CAS  PubMed  Google Scholar 

  2. Nazıroğlu M, Yüksel M, Köse SA, Özkaya MO. Recent reports of Wi-Fi and mobile phone-induced radiation on oxidative stress and reproductive signaling pathways in females and males. J Membr Biol. 2013;246:869–75.

    PubMed  Google Scholar 

  3. Feychting M, Ahlbom A, Kheifets L. EMF and health. Annu Rev Public Health. 2005;26:165–89.

    PubMed  Google Scholar 

  4. Nazıroğlu M, Akman H. Effects of cellular phone-and Wi-Fi-induced electromagnetic radiation on oxidative stress and molecular pathways in brain. Systems biology of free radicals and antioxidants. Berlin: Springer; 2014. p. 2431–49.

    Google Scholar 

  5. Nesari A, Mansouri MT, Khodayar MJ, Rezaei M. Preadministration of high-dose alpha-tocopherol improved memory impairment and mitochondrial dysfunction induced by proteasome inhibition in rat hippocampus. Nutr Neurosci. 2019. https://doi.org/10.1080/1028415X.2019.1601888.

    Article  PubMed  Google Scholar 

  6. Uttara B, Singh AV, Zamboni P, Mahajan R. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7:65–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Carocho M, Ferreira IC. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol. 2013;51:15–25.

    CAS  PubMed  Google Scholar 

  8. Senanayake SN. Green tea extract: chemistry, antioxidant properties and food applications—a review. J Funct Foods. 2013;5:1529–41.

    Google Scholar 

  9. Khaki A, Farnam A, Badie AD, Nikniaz H. Treatment effects of onion (Allium cepa) and ginger (Zingiber officinale) on sexual behavior of rat after inducing an antiepileptic drug (lamotrigine). Balkan Med J. 2012;29:236.

    PubMed  PubMed Central  Google Scholar 

  10. Kochan E, Wysokinska H, Chmiel A, Grabias B. Rosmarinic acid and other phenolic acids in hairy roots of Hyssopus officinalis. Z Naturforsch C. 1999;54:11–6.

    CAS  Google Scholar 

  11. Lu Y, Foo LY. Rosmarinic acid derivatives from Salvia officinalis. Phytochemistry. 1999;51:91–4.

    CAS  Google Scholar 

  12. Petersen M, Simmonds MS. Rosmarinic acid. Phytochemistry. 2003;62:121–5.

    CAS  PubMed  Google Scholar 

  13. Ghazizadeh M, Tavakoli H, Hossienzadeh M. Design of a wideband transition apex structure for GTEM cells. The third Iranian Conference on Engineering Electromagnetic (ICEEM 2014). Tehran, Iran2014.

  14. Lu Y, Xu S, He M, Chen C, Zhang L, Liu C, et al. Glucose administration attenuates spatial memory deficits induced by chronic low-power-density microwave exposure. Physiol Behav. 2012;106:631–7.

    CAS  PubMed  Google Scholar 

  15. Hajhosseini L, Khaki A, Merat E, Ainehchi N. Effect of rosmarinic acid on sertoli cells apoptosis and serum antioxidant levels in rats after exposure to electromagnetic fields. Afr J Tradit Complement Altern Med. 2013;10:477–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mushtaq N, Schmatz R, Pereira LB, Ahmad M, Stefanello N, Vieira JM, et al. Rosmarinic acid prevents lipid peroxidation and increase in acetylcholinesterase activity in brain of streptozotocin-induced diabetic rats. Cell Biochem Funct. 2014;32:287–93.

    CAS  PubMed  Google Scholar 

  17. Nazıroğlu M, Çelik Ö, Özgül C, Çiğ B, Doğan S, Bal R, et al. Melatonin modulates wireless (2.45 GHz)-induced oxidative injury through TRPM2 and voltage gated Ca2 + channels in brain and dorsal root ganglion in rat. Physiol Behav. 2012;105:683-92.

    PubMed  Google Scholar 

  18. Meral I, Mert H, Mert N, Deger Y, Yoruk I, Yetkin A, et al. Effects of 900-MHz electromagnetic field emitted from cellular phone on brain oxidative stress and some vitamin levels of guinea pigs. Brain Res. 2007;1169:120–4.

    CAS  PubMed  Google Scholar 

  19. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7:27.

    PubMed  PubMed Central  Google Scholar 

  20. Rezaei M, Vardanjani HR, Pashmforoosh M, Alipour D, Nesari A, Mansourzade Z, et al. Spinal CB1 cannabinoid receptors and antinociceptive effect of celecoxib in rat formalin test. Jundishapur J Nat Pharm Prod. 2016. https://doi.org/10.17795/jjnpp-33433.

    Article  Google Scholar 

  21. Goudarzi M, Mombeini MA, Fatemi I, Aminzadeh A, Kalantari H, Nesari A, et al. Neuroprotective effects of Ellagic acid against acrylamide-induced neurotoxicity in rats. Neurol Res. 2019;41:419–28.

    CAS  PubMed  Google Scholar 

  22. Mehrzadi S, Fatemi I, Malayeri AR, Khodadadi A, Mohammadi F, Mansouri E, et al. Ellagic acid mitigates sodium arsenite-induced renal and hepatic toxicity in male Wistar rats. Pharmacol Rep. 2018;70:712–9.

    CAS  PubMed  Google Scholar 

  23. Bahrami N, Goudarzi M, Hosseinzadeh A, Sabbagh S, Reiter RJ, Mehrzadi S. Evaluating the protective effects of melatonin on di (2-ethylhexyl) phthalate-induced testicular injury in adult mice. Biomed Pharmacother. 2018;108:515–23.

    CAS  PubMed  Google Scholar 

  24. Safaei F, Mehrzadi S, Khadem Haghighian H, Hosseinzadeh A, Nesari A, Dolatshahi M, et al. Protective effects of gallic acid against methotrexate-induced toxicity in rats. Acta Chir Belg. 2018;118:152–60.

    PubMed  Google Scholar 

  25. Tracey WR, Linden J, Peach MJ, Johns RA. Comparison of spectrophotometric and biological assays for nitric oxide (NO) and endothelium-derived relaxing factor (EDRF): nonspecificity of the diazotization reaction for NO and failure to detect EDRF. J Pharmacol Exp Ther. 1990;252:922–8.

    CAS  PubMed  Google Scholar 

  26. Goudarzi M, Amiri S, Nesari A, Hosseinzadeh A, Mansouri E, Mehrzadi S. The possible neuroprotective effect of ellagic acid on sodium arsenate-induced neurotoxicity in rats. Life Sci. 2018;198:38–45.

    CAS  PubMed  Google Scholar 

  27. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239:70–6.

    CAS  PubMed  Google Scholar 

  28. Zhang Y, Chen X, Yang L, Zu Y, Lu Q. Effects of rosmarinic acid on liver and kidney antioxidant enzymes, lipid peroxidation and tissue ultrastructure in aging mice. Food Funct. 2015;6:927–31.

    CAS  PubMed  Google Scholar 

  29. Fernando PMDJ, Piao MJ, Kang KA, Ryu YS, Hewage SRKM, Chae SW, et al. Rosmarinic acid attenuates cell damage against UVB radiation-induced oxidative stress via enhancing antioxidant effects in human HaCaT cells. Biomol Ther. 2016;24:75.

    CAS  Google Scholar 

  30. Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF. The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol. 2003;66:1499–503.

    CAS  PubMed  Google Scholar 

  31. Shahin S, Singh VP, Shukla RK, Dhawan A, Gangwar RK, Singh SP, et al. 2.45 GHz microwave irradiation-induced oxidative stress affects implantation or pregnancy in mice, Mus musculus. Appl Biochem Biotechnol. 2013;169:1727-51.

    CAS  PubMed  Google Scholar 

  32. Salah MB, Abdelmelek H, Abderraba M. Effects of olive leave extract on metabolic disorders and oxidative stress induced by 2.45 GHz WIFI signals. Environ Toxicol Pharmacol. 2013;36:826-34.

  33. Ozguner F, Armagan A, Koyu A, Calıskan S, Koylu H. A novel antioxidant agent caffeic acid phenethyl ester prevents shock wave-induced renal tubular oxidative stress. Urol Res. 2005;33:239–43.

    CAS  PubMed  Google Scholar 

  34. Yüksel M, Nazıroğlu M, Özkaya MO. Long-term exposure to electromagnetic radiation from mobile phones and Wi-Fi devices decreases plasma prolactin, progesterone, and estrogen levels but increases uterine oxidative stress in pregnant rats and their offspring. Endocrine. 2016;52:352–62.

    PubMed  Google Scholar 

  35. Özorak A, Nazıroğlu M, Çelik Ö, Yüksel M, Özçelik D, Özkaya MO, et al. Wi-Fi (2.45 GHz)-and mobile phone (900 and, MHz)-induced risks on oxidative stress and elements in kidney and testis of rats during pregnancy and the development of offspring. Biol Trace Elem Res. 1800;2013(156):221–9.

    Google Scholar 

  36. Yurekli AI, Ozkan M, Kalkan T, Saybasili H, Tuncel H, Atukeren P, et al. GSM base station electromagnetic radiation and oxidative stress in rats. Electromagn Biol Med. 2006;25:177–88.

    CAS  PubMed  Google Scholar 

  37. Bryan NS, Rassaf T, Maloney RE, Rodriguez CM, Saijo F, Rodriguez JR, et al. Cellular targets and mechanisms of nitros (yl) ation: an insight into their nature and kinetics in vivo. Proc Natl Acad Sci. 2004;101:4308–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ilhan A, Gurel A, Armutcu F, Kamisli S, Iraz M, Akyol O, et al. Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain. Clin Chim Acta. 2004;340:153–62.

    CAS  PubMed  Google Scholar 

  39. Stopczyk D, Gnitecki W, Buczyński A, Kowalski W, Buczyńska M, Kroc A. Effect of electromagnetic field produced by mobile phones on the activity of superoxide dismutase (SOD-1)–in vitro researches. Ann Acad Med Stetin. 2005;51:125–8.

    PubMed  Google Scholar 

  40. Lo A-H, Liang Y-C, Lin-Shiau S-Y, Ho C-T, Lin J-K. Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-κB in mouse macrophages. Carcinogenesis. 2002;23:983–91.

    CAS  PubMed  Google Scholar 

  41. Park JA, Kim S, Lee S-Y, Kim C-S, Kim DK, Kim S-J, et al. Beneficial effects of carnosic acid on dieldrin-induced dopaminergic neuronal cell death. NeuroReport. 2008;19:1301–4.

    CAS  PubMed  Google Scholar 

  42. Agarwal R. Chronic kidney disease is associated with oxidative stress independent of hypertension. Clin Nephrol. 2004;61:377–83.

    CAS  PubMed  Google Scholar 

  43. Navarro A. Mitochondrial enzyme activities as biochemical markers of aging. Mol Aspects Med. 2004;25:37–48.

    CAS  PubMed  Google Scholar 

  44. Nagy G, Ward J, Mosser DD, Koncz A, Gergely P, Stancato C, et al. Regulation of CD4 expression via recycling by HRES-1/RAB4 controls susceptibility to HIV infection. J Biol Chem. 2006;281:34574–91.

    CAS  PubMed  Google Scholar 

  45. Eser O, Songur A, Aktas C, Karavelioglu E, Caglar V, Aylak F, et al. The effect of electromagnetic radiation on the rat brain: an experimental study. Turk Neurosurg. 2013;23:707–15.

    PubMed  Google Scholar 

  46. Irmak MK, Fadıllıoğlu E, Güleç M, Erdoğan H, Yağmurca M, Akyol Ö. Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell Biochem Funct. 2002;20:279–83.

    CAS  PubMed  Google Scholar 

  47. Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T. Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat Res. 2005;579:200–13.

    CAS  PubMed  Google Scholar 

  48. Del Bano M, Castillo J, Benavente-García O, Lorente J, Martín-Gil R, Acevedo C, et al. Radioprotective-antimutagenic effects of rosemary phenolics against chromosomal damage induced in human lymphocytes by γ-rays. J Agric Food Chem. 2006;54:2064–8.

    PubMed  Google Scholar 

  49. Renzulli C, Galvano F, Pierdomenico L, Speroni E, Guerra M. Effects of rosmarinic acid against aflatoxin B1 and ochratoxin-A-induced cell damage in a human hepatoma cell line (Hep G2). J Appl Toxicol. 2004;24:289–96.

    CAS  PubMed  Google Scholar 

  50. Guney M, Ozguner F, Oral B, Karahan N, Mungan T. 900 MHz radiofrequency-induced histopathologic changes and oxidative stress in rat endometrium: protection by vitamins E and C. Toxicol Ind Health. 2007;23:411–20.

    CAS  PubMed  Google Scholar 

  51. Al-Damegh MA. Rat testicular impairment induced by electromagnetic radiation from a conventional cellular telephone and the protective effects of the antioxidants vitamins C and E. Clinics. 2012;67:785–92.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Deputy of Research of (AJUMS), Iran, who supported this study, is appreciated (Grant Number: MPRC-9708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Shoghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asl, J.F., Goudarzi, M. & Shoghi, H. The radio-protective effect of rosmarinic acid against mobile phone and Wi-Fi radiation-induced oxidative stress in the brains of rats. Pharmacol. Rep 72, 857–866 (2020). https://doi.org/10.1007/s43440-020-00063-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-020-00063-9

Keywords

Navigation