Skip to main content

Advertisement

Log in

Renal protective effect of nebivolol in rat models of acute renal injury: role of sodium glucose co-transporter 2

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Upregulation of the sodium glucose co-transporter (SGLT2) is implicated in acute renal injury (ARI) progression and is regulated by extracellular signal-regulated kinase (ERK), hypoxia-inducible factor 1 alpha (HIF1α) or prostaglandin E2 (PGE2). This study aimed to assess the possible protective effect of nebivolol on renal ischemia/reperfusion (IR) and glycerol-induced ARI targeting SGLT2 via modulating the ERK–HIF1α pathway.

Methods

Rats were divided into control, sham, IR or nebivolol-treated group, in which rats were treated with nebivolol (10 mg/kg) for 3 days prior to the induction of IR. The rats were subjected to renal ischemia by bilateral clamping of the pedicles for 45 min, followed by 24 h reperfusion. Another group of rats received the vehicle or nebivolol (10 mg/kg) for 3 days followed by injection of 50% glycerol (8 ml/kg, IM) or saline. Kidney function tests, systolic blood pressure (SBP), oxidative stress markers [malondialdehyde (MDA) and NADPH oxidase] and kidney levels of nitric oxide (NO), inducible nitric oxide synthase (iNOS), HIF1α, ERK phosphorylation and PGE2 were determined. Additionally, renal sections were used for histological grading of renal injury and immunological expression of SGLT2.

Results

ARI rats showed significantly increased SBP, poor kidney function tests, increased oxidative stress, iNOS, NO, HIF1α levels, decreased PGE2 and ERK phosphorylation and upregulation of SGLT2 expression. Nebivolol treatment protected against the kidney damage both on the biochemical and histological levels.

Conclusion

Nebivolol has a direct renoprotective effect, at least in part, by down-regulating SGLT2 possibly via modulating HIF1α, ERK activity and PGE2 production.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANOVA:

One-way analysis of variance

ARI:

Acute renal injury

ERK:

Extracellular signal-regulated kinase

eNOS:

Endothelial nitric oxide synthetase

GFR:

Glomerular filtration rate

GLY:

Glycerol

HE:

Hematoxylin and eosin

HIF1 α:

Hypoxia-inducible factor 1 alpha

IHC:

Immunohistochemistry

iNOS:

Inducible nitric oxide synthetase

IR:

Ischemia/reperfusion

MDA:

Malondialdehyde

NADPH oxidase:

Nicotinamide adenine dinucleotide phosphate oxidase

NO:

Nitric oxide

PGE2:

Prostaglandin E2

ROS:

Reactive oxygen species

SBP:

Systolic blood pressure

SEM:

Standard error of the mean

SGLT2:

Sodium glucose co-transporter 2

References

  1. Singh AP, Junemann A, Muthuraman A, Jaggi AS, Singh N, Grover K, et al. Animal models of acute renal failure. Pharmacol Rep. 2012;64:31–44.

    CAS  PubMed  Google Scholar 

  2. Helmy MM, El-Gowelli HM. Montelukast abrogates rhabdomyolysis-induced acute renal failure via rectifying detrimental changes in antioxidant profile and systemic cytokines and apoptotic factors production. Eur J Pharmacol. 2012;683:294–300.

    CAS  PubMed  Google Scholar 

  3. Panizo N, Rubio-Navarro A, Amaro-Villalobos JM, Egido J, Moreno JA. Molecular mechanisms and novel therapeutic approaches to rhabdomyolysis-induced acute kidney injury. Kidney Blood Press Res. 2015;40:520–32.

    CAS  PubMed  Google Scholar 

  4. Gueler F, Gwinner W, Schwarz A, Haller H. Long-term effects of acute ischemia and reperfusion injury. Kidney Int. 2004;66:523–7.

    PubMed  Google Scholar 

  5. Williams P, Lopez H, Britt D, Chan C, Ezrin A, Hottendorf R. Characterization of renal ischemia-reperfusion injury in rats. J Pharmacol Toxicol Methods. 1997;37:1–7.

    CAS  PubMed  Google Scholar 

  6. Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015;6:524–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Villanueva S, Céspedes C, González AA, Vio CP, Velarde V. Effect of ischemic acute renal damage on the expression of COX-2 and oxidative stress-related elements in rat kidney. Am J Physiol Renal Physiol. 2007;292:F1364–71.

    CAS  PubMed  Google Scholar 

  8. Weidemann A, Bernhardt WM, Klanke B, Daniel C, Buchholz B, Câmpean V, et al. HIF activation protects from acute kidney injury. J Am Soc Nephrol. 2008;19:486–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Minet E, Arnould T, Michel G, Roland I, Mottet D, Raes M, et al. ERK activation upon hypoxia: involvement in HIF-1 activation. FEBS Lett. 2000;468:53–8.

    CAS  PubMed  Google Scholar 

  10. Hari Kishore A, Li XH, Word RA. Hypoxia and PGE(2) regulate MiTF-CX during cervical ripening. Mol Endocrinol. 2012;26:2031–45.

    PubMed  PubMed Central  Google Scholar 

  11. Haase VH. Hypoxia-inducible factors in the kidney. Am J Physiol Renal Physiol. 2006;291:F271–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nasrallah R, Zimpelmann J, Eckert D, Ghossein J, Geddes S, Beique J-C, et al. PGE 2 EP 1 receptor inhibits vasopressin-dependent water reabsorption and sodium transport in mouse collecting duct. Lab Invest. 2018;98:360.

    CAS  PubMed  Google Scholar 

  13. Layton AT, Vallon V, Edwards A. Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron. Am J Physiol Renal Physiol. 2016;310:F1269–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Panchapakesan U, Pegg K, Gross S, Komala MG, Mudaliar H, Forbes J, et al. Effects of SGLT2 inhibition in human kidney proximal tubular cells—renoprotection in diabetic nephropathy? PLoS One. 2013;8:e54442.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Maffei A, Lembo G. Nitric oxide mechanisms of nebivolol. Ther Adv Cardiovasc Dis. 2009;3:317–27.

    PubMed  Google Scholar 

  16. Münzel T, Gori T. Nebivolol: the somewhat-different β-adrenergic receptor blocker. J Am Coll Cardiol. 2009;54:1491–9.

    PubMed  Google Scholar 

  17. Hu T, Beattie WS, Mazer CD, Leong-Poi H, Fujii H, Wilson DF, et al. Treatment with a highly selective β1 antagonist causes dose-dependent impairment of cerebral perfusion after hemodilution in rats. Anesth Analg. 2013;116:649–62.

    CAS  PubMed  Google Scholar 

  18. Zapata-Morales JR, Galicia-Cruz OG, Franco M, y Morales FM. Hypoxia-inducible factor-1α (HIF-1α) protein diminishes sodium glucose transport 1 (SGLT1) and SGLT2 protein expression in renal epithelial tubular cells (LLC-PK1) under hypoxia. J Biol Chem. 2014;289:346–57.

    CAS  PubMed  Google Scholar 

  19. Georgescu A, Pluteanu F, Flonta M-L, Badila E, Dorobantu M, Popov D. The cellular mechanisms involved in the vasodilator effect of nebivolol on the renal artery. Eur J Pharmacol. 2005;508:159–66.

    CAS  PubMed  Google Scholar 

  20. Chang Y-K, Choi H, Jeong JY, Na K-R, Lee KW, Lim BJ, et al. Dapagliflozin, SGLT2 inhibitor, attenuates renal ischemia-reperfusion injury. PLoS One. 2016;11:e0158810.

    PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Zhang MS, Liu Y. Nebivolol treatment improves resistant arterial function and reduces ventricular hypertrophy and angiotensin II in spontaneously hypertension rats. J Renin Angiotensin Aldosterone Syst. 2013;14:146–55.

    CAS  PubMed  Google Scholar 

  22. Singh D, Chander V, Chopra K. Protective effect of naringin, a bioflavonoid on glycerol-induced acute renal failure in rat kidney. Toxicology. 2004;201:143–51.

    CAS  PubMed  Google Scholar 

  23. Paller MS, Hoidal J, Ferris TF. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest. 1984;74:1156–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wei Q, Dong Z. Mouse model of ischemic acute kidney injury: technical notes and tricks. Am J Physiol Renal Physiol. 2012;303:F1487–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sayhan MB, Kanter M, Oguz S, Erboga M. Protective effect of Urtica dioica L. on renal ischemia/reperfusion injury in rat. J Mol Histol. 2012;43:691–8.

    PubMed  Google Scholar 

  26. Chander V, Singh D, Chopra K. Catechin, a natural antioxidant protects against rhabdomyolysis-induced myoglobinuric acute renal failure. Pharmacol Res. 2003;48:503–9.

    CAS  PubMed  Google Scholar 

  27. Sorg DA, Buckner B. A simple method of obtaining venous blood from small laboratory animals. Proc Soc Exp Biol Med. 1964;115:1131–2.

    CAS  PubMed  Google Scholar 

  28. Varghese F, Bukhari AB, Malhotra R, De A. IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One. 2014;9:e96801.

    PubMed  PubMed Central  Google Scholar 

  29. Hao Q, Xiao X, Zhen J, Feng J, Song C, Jiang B, et al. Resveratrol attenuates acute kidney injury by inhibiting death receptor-mediated apoptotic pathways in a cisplatin-induced rat model. Mol Med Rep. 2016;14:3683–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kinsey GR, Sharma R, Huang L, Li L, Vergis AL, Ye H, et al. Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury. J Am Soc Nephrol. 2009;20:1744–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chatzizisis YS, Misirli G, Hatzitolios AI, Giannoglou GD. The syndrome of rhabdomyolysis: complications and treatment. Eur J Intern Med. 2008;19:568–74.

    PubMed  Google Scholar 

  32. Oken D, Arce M, Wilson DR. Glycerol-induced hemoglobinuric acute renal failure in the rat. I. Micropuncture study of the development of oliguria. J Clin Invest. 1966;45:724–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin–angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59:251–87.

    CAS  PubMed  Google Scholar 

  34. Greven J, Gabriëls G. Effect of nebivolol, a novel β1-selective adrenoceptor antagonist with vasodilating properties, on kidney function. Arzneimittelforschung. 2000;50:973–9.

    CAS  PubMed  Google Scholar 

  35. Atwa A, Hegazy R, Shaffie N, Yassin N, Kenawy S. Protective effects of vasodilatory βeta-blockers carvedilol and nebivolol against glycerol model of rhabdomyolysis-induced acute renal failure in rats. Open Access Maced J Med Sci. 2016;4:329.

    PubMed  PubMed Central  Google Scholar 

  36. Youssef MI, Mahmoud AA, Abdelghany RH. A new combination of sitagliptin and furosemide protects against remote myocardial injury induced by renal ischemia/reperfusion in rats. Biochem Pharmacol. 2015;96:20–9.

    CAS  PubMed  Google Scholar 

  37. Yu L, Gengaro PE, Niederberger M, Burke TJ, Schrier RW. Nitric oxide: a mediator in rat tubular hypoxia/reoxygenation injury. Proc Natl Acad Sci USA. 1994;91:1691–5.

    CAS  PubMed  Google Scholar 

  38. Valdivielso J, Lopez-Novoa J, Eleno N, Barriocanal FP. Role of glomerular nitric oxide in glycerol-induced acute renal failure. Can J Physiol Pharmacol. 2000;78:476–82.

    CAS  PubMed  Google Scholar 

  39. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol Cell Physiol. 1996;271:C1424–37.

    CAS  Google Scholar 

  40. Noiri E, Peresleni T, Miller F, Goligorsky MS. In vivo targeting of inducible NO synthase with oligodeoxynucleotides protects rat kidney against ischemia. J Clin Invest. 1996;97:2377–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Whaley-Connell A, Habibi J, Johnson M, Tilmon R, Rehmer N, Rehmer J, et al. Nebivolol reduces proteinuria and renal NADPH oxidase-generated reactive oxygen species in the transgenic Ren2 rat. Am J Nephrol. 2009;30:354–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Morsy MA, Heeba GH. Nebivolol ameliorates cisplatin-induced nephrotoxicity in rats. Basic Clin Pharmacol Toxicol. 2016;118:449–55.

    CAS  PubMed  Google Scholar 

  43. Cominacini L, Pasini AF, Garbin U, Nava C, Davoli A, Criscuoli M, et al. Nebivolol and its 4-keto derivative increase nitric oxide in endothelial cells by reducing its oxidative inactivation. J Am Coll Cardiol. 2003;42:1838–44.

    CAS  PubMed  Google Scholar 

  44. Yang C-C, Lin L-C, Wu M-S, Chien C-T, Lai M-K. Repetitive hypoxic preconditioning attenuates renal ischemia/reperfusion induced oxidative injury via upregulating HIF-1α-dependent bcl-2 signaling. Transplantation. 2009;88:1251–60.

    CAS  PubMed  Google Scholar 

  45. Villanueva S, Céspedes C, Gonzalez A, Vio CP, Velarde V. Effect of ischemic acute renal damage on the expression of COX-2 and oxidative stress related elements in rat kidney. Am J Physiol Renal Physiol. 2007;292:F1364–71.

    CAS  PubMed  Google Scholar 

  46. Pippin JW, Durvasula R, Petermann A, Hiromura K, Couser WG, Shankland SJ. DNA damage is a novel response to sublytic complement C5b-9-induced injury in podocytes. J Clin Invest. 2003;111:877–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jang H-S, Han SJ, Kim JI, Lee S, Lipschutz JH, Park KM. Activation of ERK accelerates repair of renal tubular epithelial cells, whereas it inhibits progression of fibrosis following ischemia/reperfusion injury. Biochim Biophys Acta. 2013;1832:1998–2008.

    CAS  PubMed  Google Scholar 

  48. El-Ashmawy NE, Khedr EG, El-Bahrawy HA, Selim HM. Nebivolol prevents indomethacin-induced gastric ulcer in rats. J Immunotoxicol. 2016;13:580–9.

    CAS  PubMed  Google Scholar 

  49. Erickson CE, Gul R, Blessing CP, Nguyen J, Liu T, Pulakat L, et al. The β-blocker nebivolol is a GRK/β-arrestin biased agonist. PLoS One. 2013;8:e71980.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nakamura N, Matsui T, Ishibashi Y, Yamagishi S-i. Insulin stimulates SGLT2-mediated tubular glucose absorption via oxidative stress generation. Diabetol Metab Syndr. 2015;7:48.

    PubMed  PubMed Central  Google Scholar 

  51. Kalra S, Singh V, Nagrale D. Sodium-glucose cotransporter-2 inhibition and the glomerulus: a review. Adv Ther. 2016;33:1502–18.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work did not receive any funding from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samar Rezq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest concerning this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasr, A.M., Rezq, S., Shaheen, A. et al. Renal protective effect of nebivolol in rat models of acute renal injury: role of sodium glucose co-transporter 2. Pharmacol. Rep 72, 956–968 (2020). https://doi.org/10.1007/s43440-020-00059-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-020-00059-5

Keywords

Navigation