Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 3, 2020

The endoplasmic reticulum-mitochondria encounter structure: coordinating lipid metabolism across membranes

  • Benoît Kornmann ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

Endosymbiosis, the beginning of a collaboration between an archaeon and a bacterium and a founding step in the evolution of eukaryotes, owes its success to the establishment of communication routes between the host and the symbiont to allow the exchange of metabolites. As far as lipids are concerned, it is the host that has learnt the symbiont’s language, as eukaryote lipids appear to have been borrowed from the bacterial symbiont. Mitochondria exchange lipids with the rest of the cell at membrane contact sites. In fungi, the endoplasmic reticulum-mitochondria encounter structure (ERMES) is one of the best understood membrane tethering complexes. Its discovery has yielded crucial insight into the mechanisms of intracellular lipid trafficking. Despite a wealth of data, our understanding of ERMES formation and its exact role(s) remains incomplete. Here, I endeavour to summarise our knowledge on the ERMES complex and to identify lingering gaps.

Acknowledgements

Many thanks to Maya Schuldiner, Jeremy Wideman and all members of the Kornmann lab for their critical reading and ideas. I have no conflict of interest. I am an investigator of the Wellcome Trust (Funder Id: http://dx.doi.org/10.13039/100004440, grant 214291/Z/18/Z).

References

AhYoung, A.P., Jiang, J., Zhang, J., Khoi Dang, X., Loo, J.A., Zhou, Z.H., and Egea, P.F. (2015). Conserved SMP domains of the ERMES complex bind phospholipids and mediate tether assembly. Proc. Natl. Acad. Sci. USA 112, E3179–E3188.10.1073/pnas.1422363112Search in Google Scholar PubMed PubMed Central

AhYoung, A.P., Lu, B., Cascio, D., and Egea, P.F. (2017). Crystal structure of Mdm12 and combinatorial reconstitution of Mdm12/Mmm1 ERMES complexes for structural studies. Bioch. Biophys. Res. Commun. 488, 129–135.10.1016/j.bbrc.2017.05.021Search in Google Scholar PubMed PubMed Central

Araiso, Y., Tsutsumi, A., Qiu, J., Imai, K., Shiota, T., Song, J., Lindau, C., Wenz, L.-S., Sakaue, H., Yunoki, K., et al. (2019). Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature 575, 395–401.10.1038/s41586-019-1680-7Search in Google Scholar PubMed

Balla, T., Kim, Y.J., Alvarez-Prats, A., and Pemberton, J. (2019). Lipid dynamics at contact sites between the endoplasmic reticulum and other organelles. Annu. Rev. Cell Dev. Biol. 35, 85–109.10.1146/annurev-cellbio-100818-125251Search in Google Scholar PubMed

Baum, D.A. and Baum, B. (2014). An inside-out origin for the eukaryotic cell. BMC Biol. 12, 76.10.1186/s12915-014-0076-2Search in Google Scholar PubMed PubMed Central

Bausewein, T., Mills, D.J., Langer, J.D., Nitschke, B., Nussberger, S., and Kühlbrandt, W. (2017). Cryo-EM structure of the TOM core complex from Neurospora crassa. Cell 170, 693–700.e7.10.1016/j.cell.2017.07.012Search in Google Scholar PubMed

Bean, B.D.M., Dziurdzik, S.K., Kolehmainen, K.L., Fowler, C.M.S., Kwong, W.K., Grad, L.I., Davey, M., Schluter, C., and Conibear, E. (2018). Competitive organelle-specific adaptors recruit Vps13 to membrane contact sites. J. Cell Biol. 217, 3593–3607.10.1083/jcb.201804111Search in Google Scholar PubMed PubMed Central

Berger, K.H., Sogo, L.F., and Yaffe, M.P. (1997). Mdm12p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast. J. Cell Biol. 136, 545–553.10.1083/jcb.136.3.545Search in Google Scholar PubMed PubMed Central

Boldogh, I., Nowakowski, D.W., Yang, H.-C., Chung, H., Karmon, S., Royes, P., and Pon, L.A. (2003). A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. Mol. Biol. Cell 14, 4618–4627.10.1091/mbc.e03-04-0225Search in Google Scholar PubMed PubMed Central

Burgess, S.M., Delannoy, M., and Jensen, R.E. (1994). MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria. J. Cell Biol. 126, 1375–1391.10.1083/jcb.126.6.1375Search in Google Scholar PubMed PubMed Central

Chowdhury, S., Otomo, C., Leitner, A., Ohashi, K., Aebersold, R., Lander, G.C., and Otomo, T. (2018). Insights into autophagosome biogenesis from structural and biochemical analyses of the ATG2A-WIPI4 complex. Proc. Natl. Acad. Sci. USA 115, E9792–E9801.10.1073/pnas.1811874115Search in Google Scholar PubMed PubMed Central

Collado, J., Kalemanov, M., Campelo, F., Bourgoint, C., Thomas, F., Loewith, R., Martínez-Sánchez, A., Baumeister, W., Stefan, C.J., and Fernández-Busnadiego, R. (2019). Tricalbin-mediated contact sites control ER curvature to maintain plasma membrane integrity. Dev. Cell 51, 476–487.e7.10.1016/j.devcel.2019.10.018Search in Google Scholar PubMed PubMed Central

Creutz, C.E., Snyder, S.L., and Schulz, T.A. (2004). Characterization of the yeast tricalbins: membrane-bound multi-C2-domain proteins that form complexes involved in membrane trafficking. Cell. Mol. Life Sci. 61, 1208–1220.10.1007/s00018-004-4029-8Search in Google Scholar PubMed

Csordás, G., Renken, C., Várnai, P., Walter, L., Weaver, D., Buttle, K.F., Balla, T., Mannella, C.A., and Hajnóczky, G. (2006). Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915–921.10.1083/jcb.200604016Search in Google Scholar PubMed PubMed Central

Daum, G. and Vance, J. (1997). Import of lipids into mitochondria. Prog. Lipid Res. 36, 103–130.10.1016/S0163-7827(97)00006-4Search in Google Scholar PubMed

De, M., Oleskie, A.N., Ayyash, M., Dutta, S., Mancour, L., Abazeed, M.E., Brace, E.J., Skiniotis, G., and Fuller, R.S. (2017). The Vps13p-Cdc31p complex is directly required for TGN late endosome transport and TGN homotypic fusion. J. Cell Biol. 216, 425–439.10.1083/jcb.201606078Search in Google Scholar PubMed PubMed Central

Dittman, J.S. and Menon, A.K. (2017). Speed limits for nonvesicular intracellular sterol transport. Trends Bioch. Sci. 42, 90–97.10.1016/j.tibs.2016.11.004Search in Google Scholar PubMed PubMed Central

Elbaz-Alon, Y., Rosenfeld-Gur, E., Shinder, V., Futerman, A.H., Geiger, T., and Schuldiner, M. (2014). A dynamic interface between vacuoles and mitochondria in yeast. Dev. Cell 30, 95–102.10.1016/j.devcel.2014.06.007Search in Google Scholar PubMed

Elbaz-Alon, Y., Eisenberg-Bord, M., Shinder, V., Stiller, S.B., Shimoni, E., Wiedemann, N., Geiger, T., and Schuldiner, M. (2015). Lam6 regulates the extent of contacts between organelles. Cell Rep. 12, 7–14.10.1016/j.celrep.2015.06.022Search in Google Scholar PubMed PubMed Central

Ellenrieder, L., Opaliński, Ł., Becker, L., Krüger, V., Mirus, O., Straub, S.P., Ebell, K., Flinner, N., Stiller, S.B., Guiard, B., et al. (2016). Separating mitochondrial protein assembly and endoplasmic reticulum tethering by selective coupling of Mdm10. Nat. Commun. 7, 13021.10.1038/ncomms13021Search in Google Scholar PubMed PubMed Central

Flinner, N., Ellenrieder, L., Stiller, S.B., Becker, T., Schleiff, E., and Mirus, O. (2013). Mdm10 is an ancient eukaryotic porin co-occurring with the ERMES complex. Biochim. Biophys. Acta 1833, 3314–3325.10.1016/j.bbamcr.2013.10.006Search in Google Scholar PubMed

Friedman, J.R., Kannan, M., Toulmay, A., Jan, C.H., Weissman, J.S., Prinz, W.A., and Nunnari, J. (2018). Lipid homeostasis is maintained by dual targeting of the mitochondrial PE biosynthesis enzyme to the ER. Dev. Cell 44, 261–270.e6.10.1016/j.devcel.2017.11.023Search in Google Scholar PubMed PubMed Central

González Montoro, A., Auffarth, K., Hönscher, C., Bohnert, M., Becker, T., Warscheid, B., Reggiori, F., van der Laan, M., Fröhlich, F., and Ungermann, C. (2018). Vps39 interacts with Tom40 to establish one of two functionally distinct vacuole-mitochondria contact sites. Dev. Cell 45, 621–636.e7.10.1016/j.devcel.2018.05.011Search in Google Scholar PubMed

Gray, M.W. and Doolittle, W.F. (1982). Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46, 1–42.10.1128/mr.46.1.1-42.1982Search in Google Scholar PubMed PubMed Central

Guillén-Samander, A., Bian, X., and De Camilli, P. (2019). PDZD8 mediates a Rab7-dependent interaction of the ER with late endosomes and lysosomes. Proc. Natl. Acad. Sci. USA 116, 22619–22623.10.1073/pnas.1913509116Search in Google Scholar PubMed PubMed Central

Hirabayashi, Y., Kwon, S.-K., Paek, H., Pernice, W.M., Paul, M.A., Lee, J., Erfani, P., Raczkowski, A., Petrey, D.S., Pon, L.A., et al. (2017). ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science 358, 623–630.10.1126/science.aan6009Search in Google Scholar PubMed PubMed Central

Ho, B., Baryshnikova, A., and Brown, G.W. (2018). Unification of protein abundance datasets yields a quantitative Saccharomyces cerevisiae proteome. Cell Syst. 6, 192–205.e3.10.1016/j.cels.2017.12.004Search in Google Scholar PubMed

Hoffmann, P.C., Bharat, T.A.M., Wozny, M.R., Boulanger, J., Miller, E.A., and Kukulski, W. (2019). Tricalbins contribute to cellular lipid flux and form curved ER-PM contacts that are bridged by rod-shaped structures. Dev. Cell 51, 488–502.e8.10.1016/j.devcel.2019.09.019Search in Google Scholar PubMed PubMed Central

Hönscher, C., Mari, M., Auffarth, K., Bohnert, M., Griffith, J., Geerts, W., van der Laan, M., Cabrera, M., Reggiori, F., and Ungermann, C. (2014). Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev. Cell 30, 86–94.10.1016/j.devcel.2014.06.006Search in Google Scholar PubMed

Imachi, H., Nobu, M.K., Nakahara, N., Morono, Y., Ogawara, M., Takaki, Y., Takano, Y., Uematsu, K., Ikuta, T., Ito, M., et al. (2020). Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577, 519–525.10.1038/s41586-019-1916-6Search in Google Scholar PubMed PubMed Central

Jeong, H., Park, J., and Lee, C. (2016). Crystal structure of Mdm12 reveals the architecture and dynamic organization of the ERMES complex. EMBO Rep. 17, 1857–1871.10.15252/embr.201642706Search in Google Scholar PubMed PubMed Central

Jeong, H., Park, J., Jun, Y., and Lee, C. (2017). Crystal structures of Mmm1 and Mdm12–Mmm1 reveal mechanistic insight into phospholipid trafficking at ER-mitochondria contact sites. Proc. Natl. Acad. Sci. USA 114, E9502–E9511.10.1073/pnas.1715592114Search in Google Scholar PubMed PubMed Central

John Peter, A.T., Herrmann, B., Antunes, D., Rapaport, D., Dimmer, K.S., and Kornmann, B. (2017). Vps13-Mcp1 interact at vacuole-mitochondria interfaces and bypass ER-mitochondria contact sites. J. Cell Biol. 216, 3219–3229.10.1083/jcb.201610055Search in Google Scholar PubMed PubMed Central

Jones, J.D. and Thompson, T.E. (1990). Mechanism of spontaneous, concentration-dependent phospholipid transfer between bilayers. Biochemistry 29, 1593–1600.10.1021/bi00458a034Search in Google Scholar PubMed

Kawano, S., Tamura, Y., Kojima, R., Bala, S., Asai, E., Michel, A.H., Kornmann, B., Riezman, I., Riezman, H., Sakae, Y., et al. (2018). Structure-function insights into direct lipid transfer between membranes by Mmm1-Mdm12 of ERMES. J. Cell Biol. 217, 959–974.10.1083/jcb.201704119Search in Google Scholar PubMed PubMed Central

Khelashvili, G., Chauhan, N., Pandey, K., Eliezer, D., and Menon, A.K. (2019). Exchange of water for sterol underlies sterol egress from a StARkin domain. eLife 8, pii: e53444.10.7554/eLife.53444Search in Google Scholar PubMed PubMed Central

Kojima, R., Kajiura, S., Sesaki, H., Endo, T., and Tamura, Y. (2016). Identification of multi-copy suppressors for endoplasmic reticulum-mitochondria tethering proteins in Saccharomyces cerevisiae. FEBS Lett. 590, 3061–3070.10.1002/1873-3468.12358Search in Google Scholar PubMed

Kondo-Okamoto, N., Shaw, J.M., and Okamoto, K. (2003). Mmm1p spans both the outer and inner mitochondrial membranes and contains distinct domains for targeting and foci formation. J. Biol. Chem.278, 48997–49005.10.1074/jbc.M308436200Search in Google Scholar PubMed

Kopec, K.O., Alva, V., and Lupas, A.N. (2010). Homology of SMP domains to the TULIP superfamily of lipid-binding proteins provides a structural basis for lipid exchange between ER and mitochondria. Bioinformatics 26, 1927–1931.10.1093/bioinformatics/btq326Search in Google Scholar PubMed PubMed Central

Kornmann, B., Currie, E., Collins, S.R., Schuldiner, M., Nunnari, J., Weissman, J.S., and Walter, P. (2009). An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325, 477–481.10.1126/science.1175088Search in Google Scholar PubMed PubMed Central

Kornmann, B., Osman, C., and Walter, P. (2011). The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections. Proc. Natl. Acad. Sci. USA 108, 14151–14156.10.1073/pnas.1111314108Search in Google Scholar PubMed PubMed Central

Kumar, N., Leonzino, M., Hancock-Cerutti, W., Horenkamp, F.A., Li, P., Lees, J.A., Wheeler, H., Reinisch, K.M., and De Camilli, P. (2018). VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J. Cell Biol. 217, 3625–3639.10.1083/jcb.201807019Search in Google Scholar PubMed PubMed Central

Lang, A.B., Peter, A.T.J., Walter, P., and Kornmann, B. (2015). ER-mitochondrial junctions can be bypassed by dominant mutations in the endosomal protein Vps13. J. Cell Biol. 210, 883–890.10.1083/jcb.201502105Search in Google Scholar PubMed PubMed Central

Lee, I. and Hong, W. (2006). Diverse membrane-associated proteins contain a novel SMP domain. FASEB J. 20, 202–206.10.1096/fj.05-4581hypSearch in Google Scholar PubMed

Liu, L.-K., Choudhary, V., Toulmay, A., and Prinz, W.A. (2017). An inducible ER-Golgi tether facilitates ceramide transport to alleviate lipotoxicity. J. Cell Biol. 216, 131–147.10.1083/jcb.201606059Search in Google Scholar PubMed PubMed Central

Lombard, J., López-García, P., and Moreira, D. (2012). The early evolution of lipid membranes and the three domains of life. Nat. Rev. Microbiol. 10, 507–515.10.1038/nrmicro2815Search in Google Scholar PubMed

Mari, M., Tooze, S.A., and Reggiori, F. (2011). The puzzling origin of the autophagosomal membrane. F1000 Biol. Rep. 3.10.3410/B3-25Search in Google Scholar PubMed PubMed Central

Martin, W.F., Garg, S., and Zimorski, V. (2015). Endosymbiotic theories for eukaryote origin. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 370, 20140330.10.1098/rstb.2014.0330Search in Google Scholar PubMed PubMed Central

Meisinger, C., Rissler, M., Chacinska, A., Szklarz, L.K.S., Milenkovic, D., Kozjak, V., Schönfisch, B., Lohaus, C., Meyer, H.E., Yaffe, M.P., et al. (2004). The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev. Cell 7, 61–71.10.1016/j.devcel.2004.06.003Search in Google Scholar PubMed

Michel, A.H., Hatakeyama, R., Kimmig, P., Arter, M., Peter, M., Matos, J., De Virgilio, C., and Kornmann, B. (2017). Functional mapping of yeast genomes by saturated transposition. eLife 6, pii: e23570.10.7554/eLife.23570Search in Google Scholar PubMed PubMed Central

Murley, A., Sarsam, R.D., Toulmay, A., Yamada, J., Prinz, W.A., and Nunnari, J. (2015). Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts. J. Cell Biol. 209, 539–548.10.1083/jcb.201502033Search in Google Scholar PubMed PubMed Central

Osawa, T., Kotani, T., Kawaoka, T., Hirata, E., Suzuki, K., Nakatogawa, H., Ohsumi, Y., and Noda, N.N. (2019). Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nat. Struct. Mol. Biol. 26, 281–288.10.1038/s41594-019-0203-4Search in Google Scholar PubMed

Otomo, T. and Maeda, S. (2019). ATG2A transfers lipids between membranes in vitro. Autophagy. 15, 2031–2032.10.1080/15548627.2019.1659622Search in Google Scholar PubMed PubMed Central

Otomo, T., Chowdhury, S., and Lander, G.C. (2018). The rod-shaped ATG2A-WIPI4 complex tethers membranes in vitro. Contact 1. doi: 10.1177/2515256418819936.10.1177/2515256418819936Search in Google Scholar PubMed PubMed Central

Park, J.-S., Thorsness, M.K., Policastro, R., McGoldrick, L.L., Hollingsworth, N.M., Thorsness, P.E., and Neiman, A.M. (2016). Yeast Vps13 promotes mitochondrial function and is localized at membrane contact sites. Mol. Biol. Cell 27, 2435–2449.10.1091/mbc.e16-02-0112Search in Google Scholar

Petrungaro, C., and Kornmann, B. (2019). Lipid exchange at ER-mitochondria contact sites: a puzzle falling into place with quite a few pieces missing. Curr. Opin. Cell Biol. 57, 71–76.10.1016/j.ceb.2018.11.005Search in Google Scholar PubMed

Robertson, J.D. (1960). The molecular structure and contact relationships of cell membranes. Prog. Biophys. Mol. Biol. 10, 343–418.10.1016/S0096-4174(18)30194-XSearch in Google Scholar

Sagan, L. (1967). On the origin of mitosing cells. J. Theor. Biol. 14, 255–274.10.1016/0022-5193(67)90079-3Search in Google Scholar PubMed

Saheki, Y., Bian, X., Schauder, C.M., Sawaki, Y., Surma, M.A., Klose, C., Pincet, F., Reinisch, K.M., and De Camilli, P. (2016). Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat. Cell Biol. 18, 504–515.10.1038/ncb3339Search in Google Scholar PubMed PubMed Central

Schauder, C.M., Wu, X., Saheki, Y., Narayanaswamy, P., Torta, F., Wenk, M.R., De Camilli, P., and Reinisch, K.M. (2014). Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer. Nature 510, 552–555.10.1038/nature13269Search in Google Scholar PubMed PubMed Central

Schleyer, M. and Neupert, W. (1985). Transport of proteins into mitochondria: Translocational intermediates spanning contact sites between outer and inner membranes. Cell 43, 339–350.10.1016/0092-8674(85)90039-XSearch in Google Scholar

Sogo, L.F. and Yaffe, M.P. (1994). Regulation of mitochondrial morphology and inheritance by Mdm10p, a protein of the mitochondrial outer membrane. J. Cell Biol. 126, 1361–1373.10.1083/jcb.126.6.1361Search in Google Scholar PubMed PubMed Central

Stroud, D.A., Oeljeklaus, S., Wiese, S., Bohnert, M., Lewandrowski, U., Sickmann, A., Guiard, B., van der Laan, M., Warscheid, B., and Wiedemann, N. (2011). Composition and topology of the endoplasmic reticulum-mitochondria encounter structure. J. Mol. Biol. 413, 743–750.10.1016/j.jmb.2011.09.012Search in Google Scholar PubMed

Tan, T., Ozbalci, C., Brugger, B., Rapaport, D., and Dimmer, K.S. (2013). Mcp1 and Mcp2, two novel proteins involved in mitochondrial lipid homeostasis. J. Cell Sci. 126, 3563–3574.10.1242/jcs.121244Search in Google Scholar PubMed

Tooze, S.A. and Yoshimori, T. (2010). The origin of the autophagosomal membrane. Nat. Cell Biol. 12, 831–835.10.1038/ncb0910-831Search in Google Scholar PubMed

Toulmay, A. and Prinz, W.A. (2012). A conserved membrane-binding domain targets proteins to organelle contact sites. J. Cell Sci. 125, 49–58.10.1242/jcs.085118Search in Google Scholar PubMed PubMed Central

Tucker, K. and Park, E. (2019). Cryo-EM structure of the mitochondrial protein-import channel TOM complex at near-atomic resolution. Nat. Struct. Mol. Biol. 26, 1158–1166.10.1038/s41594-019-0339-2Search in Google Scholar PubMed PubMed Central

Valverde, D.P., Yu, S., Boggavarapu, V., Kumar, N., Lees, J.A., Walz, T., Reinisch, K.M., and Melia, T.J. (2019). ATG2 transports lipids to promote autophagosome biogenesis. J. Cell Biol. 218, 1787–1798.10.1083/jcb.201811139Search in Google Scholar PubMed PubMed Central

Vance, J.E. (1990). Phospholipid synthesis in a membrane fraction associated with mitochondria. J. Biol. Chem. 265, 7248–7256.10.1016/S0021-9258(19)39106-9Search in Google Scholar

Vance, J.E., Aasman, E.J., and Szarka, R. (1991). Brefeldin A does not inhibit the movement of phosphatidylethanolamine from its sites for synthesis to the cell surface. J. Biol. Chem.266, 8241–8247.10.1016/S0021-9258(18)92968-6Search in Google Scholar

Wideman, J.G., Go, N.E., Klein, A., Redmond, E., Lackey, S.W.K., Tao, T., Kalbacher, H., Rapaport, D., Neupert, W., and Nargang, F.E. (2010). Roles of the Mdm10, Tom7, Mdm12, and Mmm1 proteins in the assembly of mitochondrial outer membrane proteins in Neurospora crassa. Mol. Biol. Cell 21, 1725–1736.10.1091/mbc.e09-10-0844Search in Google Scholar PubMed PubMed Central

Wideman, J.G., Gawryluk, R.M.R., Gray, M.W., and Dacks, J.B. (2013). The ancient and widespread nature of the ER-mitochondria encounter structure. Mol. Biol. Evol. 30, 2044–2049.10.1093/molbev/mst120Search in Google Scholar PubMed

Wideman, J.G., Balacco, D.L., Fieblinger, T., and Richards, T.A. (2018). PDZD8 is not the “functional ortholog” of Mmm1, it is a paralog. F1000 Res. 7, 1088.10.12688/f1000research.15523.1Search in Google Scholar PubMed PubMed Central

Yamano, K., Tanaka-Yamano, S., and Endo, T. (2010). Tom7 regulates Mdm10-mediated assembly of the mitochondrial import channel protein Tom40. J. Biol. Chem.285, 41222–41231.10.1074/jbc.M110.163238Search in Google Scholar PubMed PubMed Central

Zaremba-Niedzwiedzka, K., Caceres, E.F., Saw, J.H., Bäckström, D., Juzokaite, L., Vancaester, E., Seitz, K.W., Anantharaman, K., Starnawski, P., Kjeldsen, K.U., et al. (2017). Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358.10.1038/nature21031Search in Google Scholar PubMed

Zheng, J.-X., Li, Y., Ding, Y.-H., Liu, J.-J., Zhang, M.-J., Dong, M.-Q., Wang, H.-W., and Yu, L. (2017). Architecture of the ATG2B-WDR45 complex and an aromatic Y/HF motif crucial for complex formation. Autophagy 13, 1870–1883.10.1080/15548627.2017.1359381Search in Google Scholar PubMed PubMed Central

Received: 2020-01-03
Accepted: 2020-02-05
Published Online: 2020-03-03
Published in Print: 2020-05-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2020-0102/html
Scroll to top button