Skip to main content
Log in

New benzimidazole-aldehyde hybrids as neuroprotectors with hypochlorite and superoxide radical-scavenging activity

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Many neurodegenerative disorders include oxidative stress-mediated pathology. Melatonin and its metabolites act as endogenous reactive oxygen species (ROS) scavengers and antioxidants. N,N′-Disubstituted benzimidazole-2-thiones with extended side chains could exert antioxidant and neuroprotective properties due to structural similarities to melatonin.

Methods

The toxicological potential of the compounds was evaluated by monitoring the synaptosomal viability and the levels of reduced glutathione (GSH) in isolated rat brain synaptosomes. The neuroprotective effects were assessed in vitro in a model of 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. The capability to decrease superoxide anion radical and hypochlorite was evaluated by luminol-dependent chemiluminescent assays.

Results

Compounds 5–7 containing residues of veratraldehyde, vanillin, and syringaldehyde at concentration 250 μM, preserved at the highest degree the synaptosomal viability and GSH levels. Further screening of compounds 57 at lower concentrations of 100 μM, 10 μM, and 1 μM, respectively, demonstrated that 6 and 7 do not show any toxicity within this concentration range. In the model of 6-OHDA-induced oxidative stress, 6 revealed concentration-dependent, neuroprotective, and antioxidant activities similar to melatonin. All the three compounds demonstrated ability to decrease the chemiluminescent scavenging index (CL-SI) in the hypochlorite containing system. In the superoxide system, the hydrazones exhibited different effects on the signal.

Conclusions

Our studies suggest that the benzimidazole-aldehyde hybrids act as direct ROS scavengers and membranes’ stabilizers against free radicals. Thus, they play a role in the antioxidative defense system and have a promising potential as therapeutic neuroprotective agents for the treatment of neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Perry G, Cash AD, Smith MA. Alzheimer disease and oxidative stress. J Biomed Biotechnol. 2002;2(3):120–3.

    PubMed  PubMed Central  Google Scholar 

  2. Hwang O. Role of oxidative stress in Parkinson's disease. Exp Neurobiol. 2013;22(1):11–7.

    PubMed  PubMed Central  Google Scholar 

  3. Watson N, Diamandis T, Gonzales-Portillo C, Reyes S, Borlongan C. Melatonin as an antioxidant for stroke neuroprotection. Cell Transpl. 2016;25(5):883–91.

    Google Scholar 

  4. Galano A, Medina M, Tan D, Reiter R. Melatonin and its metabolites as copper chelating agents and their role in inhibiting oxidative stress: a physicochemical analysis. J Pineal Res. 2015;58(1):107–16.

    CAS  PubMed  Google Scholar 

  5. Anastassova N, Yancheva D, Mavrova A, Kondeva-Burdina M, Tzankova V, Hristova-Avakumova N, et al. Design, synthesis, antioxidant properties and mechanism of action of new N,N′-disubstituted benzimidazole-2-thione hydrazone derivatives. J Mol Struct. 2018;1165:162–76.

    CAS  Google Scholar 

  6. Anastassova N, Mavrova A, Yancheva D, Kondeva-Burdina M, Tzankova V, Stoyanov S, et al. Hepatotoxicity and antioxidant activity of some new N,N′-disubstituted benzimidazole-2-thiones, radical scavenging mechanism and structure-activity relationship. Arab J Chem. 2017;11(3):353–69.

    Google Scholar 

  7. Mathew S, Abraham TE, Zakaria ZA. Reactivity of phenolic compounds towards free radicals under in vitro conditions. J Food Sci Technol. 2015;52(9):5790–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bartolomeazzi R, Sebastianutto N, Toniolo R, Pizzariello A. Comparative evaluation of the antioxidant capacity of smoke flavouring phenols by crocin bleaching inhibition, DPPH radical scavenging and oxidation potential. Food Chem. 2007;100(4):1481–9.

    Google Scholar 

  9. Belkheiri N, Bouguerne B, Bedos-Belval F, Duran H, Bernis C, Salvayre R, et al. Synthesis and antioxidant activity evaluation of a syringic hydrazones family. Eur J Med Chem. 2010;45(7):3019–26.

    CAS  PubMed  Google Scholar 

  10. Simonyi A, Serfozo P, Lehmidi TM, Cui J, Lubahn DB, Sun AY, et al. The neuroprotective effects of apocynin. Front Biosci. 2012;4:2183–93.

    Google Scholar 

  11. Ghosh A, Kanthasamy A, Joseph J, Anantharam V, Srivastava P, Dranka BP, et al. Anti-inflammatory and neuroprotective effects of an orally active apocynin derivative in pre-clinical models of Parkinson’s disease. J Neuroinflamm. 2012;9:241–57.

    CAS  Google Scholar 

  12. Huang M, Cheng G, Tan H, Qin R, Zou Y, Wang Y, et al. Capsaicin protects cortical neurons against ischemia/reperfusion injury via down-regulating NMDA receptors. Exp Neurol. 2017;295:66–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee J, Yon J, Lin C, Jung A, Jung K, Nam S. Combined treatment with capsaicin and resveratrol enhances neuroprotection against glutamate-induced toxicity in mouse cerebral cortical neurons. Food Chem Toxicol. 2012;50:3877–85.

    CAS  PubMed  Google Scholar 

  14. Chung Y, Baek J, Kim S, Ko H, Shin W, Won S, et al. Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson's disease. Exp Mol Med. 2017;49(3):e298–e298298.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bozkurt A, Mustafa G, Tarık A, Adile O, Murat S, Mesut K, et al. Syringaldehyde exerts neuroprotective effect on cerebral ischemia injury in rats through anti-oxidative and anti-apoptotic properties. Neural Regen Res. 2014;9(21):1884–900.

    PubMed  PubMed Central  Google Scholar 

  16. Anastasova NO, Yancheva DY, Argirova MA, Hadjimitova VA, Hristova-Avakumova NG. In vitro assesment of the antioidant activity of new benzimidazole-2-thione hydrazone derivatives and DFT study of their mechanism of action. Bulg Chem Commun. 2019;51:186–92.

    Google Scholar 

  17. Taupin P, Zini S, Cesselin F, Ben-Ari Y, Roisin M. Subcellular fractionation on Percoll gradient of mossy fiber synaptosomes: morphological and biochemical characterization in control and degranulated rat hippocampus. J Neurochem. 1994;62(4):1586–95.

    CAS  PubMed  Google Scholar 

  18. Kondeva-Burdina M, Krasteva I, Mitcheva M. Effects of rhamnocitrin 4-β-D-galactopyranoside, isolated from Astragalus hamosus on toxicity models in vitro. Pharmacogn Mag. 2014;10(39):487–93.

    CAS  Google Scholar 

  19. Lowry O, Rosebrough N, Farr A, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.

    CAS  PubMed  Google Scholar 

  20. Mungarro-Menchaca X, Ferrera P, Moran J, Arias C. Beta-Amyloid peptide induces ultrastructural changes in synaptosomes and potentiates mitochondrial dysfunction in the presence of ryanodine. J Neurosci Res. 2002;68(1):89–96.

    CAS  PubMed  Google Scholar 

  21. Robyt J, Ackerman R, Chittenden C. Reaction of protein disulfide groups with Ellman's reagent: a case study of the number of sulfhydryl and disulfide groups in Aspergillus oryzae -amylase, papain, and lysozyme. Arch Biochem Biophys. 1971;147(1):262–9.

    CAS  PubMed  Google Scholar 

  22. Stokes A, Freeman W, Mitchell S, Burnette T, Hellmann G, Vrana K. Induction of GADD45 and GADD153 in neuroblastoma cells by dopamine-induced toxicity. Neurotoxicology. 2002;23:675–84.

    CAS  PubMed  Google Scholar 

  23. Hristova-Avakumova N, Yoncheva K, Nikolova-Mladenova B, Traykov T, Momekov G, Hadjimitova V. 3-Methoxy aroylhydrazones free radicals scavenging, anticancer and cytoprotective potency. Redox Rep. 2017;22(6):408–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Van Dyke K, Van Dyke C, Woodfork K, editors. Luminescence biotechnology: instruments and applications. Boca Raton: CRC Press; 2002.

    Google Scholar 

  25. Roda A, Guardigli M, Pasini P. Bioluminescence and chemiluminescence in drug screening. Anal Bioanal Chem. 2003;377(5):826–33.

    CAS  PubMed  Google Scholar 

  26. Winterbourn C, Kettle A. Redox reactions and microbial killing in the neutrophil phagosome. Antioxid Redox Signal. 2013;18(6):642–60.

    CAS  PubMed  Google Scholar 

  27. Saran M, Beck-Speier I, Fellerhoff B, Bauer G. Phagocytic killing of microorganisms by radical processes: consequences of the reaction of hydroxyl radicals with chloride yielding chlorine atoms. J Free Radic Biol Med. 1999;26(3–4):482–90.

    CAS  Google Scholar 

  28. Mehta N, Asmaro K, Hermiz D, Njus M, Saleh A, Beningo K, et al. Hypochlorite converts cysteinyl-dopamine into a cytotoxic product: a possible factor in Parkinson's Disease. J Free Radic Biol Med. 2016;101:44–52.

    CAS  Google Scholar 

  29. Lohr K, Miller G. VMAT2 and Parkinson's disease: harnessing the dopamine vesicle. Expert Rev Neurother. 2014;14(10):1115–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nutt J, Carter J, Sexton H. The dopamine transporter: importance in Parkinson's disease. Ann Neurol. 2004;55(6):766–73.

    CAS  PubMed  Google Scholar 

  31. Kumar H, Lim H, More S, Kim B, Koppula S, Kim I, et al. The role of free radicals in the aging brain and Parkinson's Disease: convergence and parallelism. Int J Mol Sci. 2012;13(8):10478–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gurer-Orhan H, Karaaslan C, Ozcan S, Firuzi O, Tavakkoli M, Saso L, et al. Novel indole-based melatonin analogues: evaluation of antioxidant activity and protective effect against amyloid β-induced damage. Bioorg Med Chem. 2016;24(8):1658–64.

    CAS  PubMed  Google Scholar 

  33. Marshall KA, Reiter RJ, Poeggeler B, Aruoma OI, Halliwell B. Evaluation of the antioxidant activity of melatonin in vitro. Free Radic Biol Med. 1996;21:307–15.

    CAS  PubMed  Google Scholar 

  34. Zang LY, Cosma G, Gardner H, Vallynathan V. Scavenging of reactive oxygen species by melatonin. Biochim Biophys Acta. 1998;1425:469–77.

    CAS  PubMed  Google Scholar 

  35. Hardeland R, Reiter RJ, Poeggeler B, Tan DX. The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev. 1993;17:347–57.

    CAS  PubMed  Google Scholar 

  36. Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res. 2007;42:28–422.

    CAS  PubMed  Google Scholar 

  37. Poeggeler B, Thuermann S, Dose A, Schoenke M, Burkhardt S, Hardeland R. Melatonin’s unique radical scavenging properties roles of its functional substituents as revealed by a comparison with its structural analogs. J Pineal Res. 2002;33:20–30.

    CAS  PubMed  Google Scholar 

  38. Oosthuizen MMJ, Greyling D. Antioxidants suitable for use with chemiluminescence to identify oxyradical species. Redox Rep. 1999;4(6):277–90.

    CAS  PubMed  Google Scholar 

  39. Sariahmetoglu M, Wheatley RA, Cakýcý Y, Kanzýk Y, Townshend A. Evaluation of the antioxidant effect of melatonin by flow injection analysis-luminol chemiluminescence. Pharmacol Res. 2003;48(4):361–7.

    CAS  PubMed  Google Scholar 

  40. Van den Worm E, Beukelman C, Van den Berg A, Kroes B, Labadie R, Van Dijk H. Effects of methoxylation of apocynin and analogs on the inhibition of reactive oxygen species production by stimulated human neutrophils. Eur J Pharmacol. 2001;433:225–30.

    PubMed  Google Scholar 

  41. Rodriguez-Pallares J, Parga JA, Munoz A, Rey P, Guerra MJ, Labandeira-Garcia JL. Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamineinduced degeneration of dopaminergic neurons. J Neurochem. 2007;103(1):145–56.

    CAS  PubMed  Google Scholar 

  42. Kamat JP, Devasagayam TPA, Priyadarsini KI, Mohan H. Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology. 2000;155(1–3):55–61.

    CAS  PubMed  Google Scholar 

  43. Gay N, Phopin K, Suwanjang W, Songtawee N, Ruankham W, Wongchitrat P, et al. Neuroprotective effects of phenolic and carboxylic acids on oxidative stress-induced toxicity in human neuroblastoma SH-SY5Y cells. Neurochem Res. 2018;43(3):619–36.

    CAS  PubMed  Google Scholar 

  44. Van Hau T, Ruankham W, Suwanjang W, Songtawee N, Wongchitrat P, Pingaew R, et al. Repurposing of nitroxoline drug for the prevention of neurodegeneration. Chem Res Toxicol. 2019;32(11):2182–91.

    PubMed  Google Scholar 

  45. Ruankham W, Suwanjang W, Wongchitrat P, Prachayasittikul V, Prachayasittikul S, Phopin K. Sesamin and sesamol attenuate H2O2-induced oxidative stress on human neuronal cells via the SIRT1-SIRT3-FOXO3a signaling pathway. Nutr Neurosci. 2019. https://doi.org/10.1080/1028415X.2019.1596613.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support by the National Science Fund of Bulgaria (contract KP-06-М29/4) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neda Anastassova.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anastassova, N., Yancheva, D., Hristova-Avakumova, N. et al. New benzimidazole-aldehyde hybrids as neuroprotectors with hypochlorite and superoxide radical-scavenging activity. Pharmacol. Rep 72, 846–856 (2020). https://doi.org/10.1007/s43440-020-00077-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-020-00077-3

Keywords

Navigation