Skip to main content

Advertisement

Log in

Chikusetsu saponin IVa alleviated sevoflurane-induced neuroinflammation and cognitive impairment by blocking NLRP3/caspase-1 pathway

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Neuroinflammation plays a dominant role in the progression of postoperative cognitive dysfunction (POCD). This study was carried out to explore the neuroprotective effect of Chikusetsu saponin IVa (ChIV) against sevoflurane-induced neuroinflammation and cognitive impairment.

Methods

The neuroprotective activity of ChIV against sevoflurane-induced cognitive dysfunction in aged rats was evaluated by Morris water maze, NOR test and Y-maze test, respectively. The expression of NLRP3, ASC and caspase-1, pro-inflammatory cytokines and apoptotic-related protein were detected in the hippocampus and primary neurons using western blot. TUNEL assay and immunohistochemistry staining were applied to assess the apoptotic cell and number of NLRP3-positive cells in the hippocampus. The oxiSelectIn Vitro ROS/RNS assay kit was used to detect the ROS level. The CCK-8 assay was applied to measure the viability of primary neurons. Flow cytometry was carried out to determine cell apoptosis.

Results

Pretreatment with ChIV significantly alleviated neurological dysfunction in aged rat exposure to sevoflurane. Mechanistically, ChIV treatment significantly alleviated sevoflurane-induced apoptotic cell and neuroinflammation. Of note, the neuroprotective effect of ChIV against sevoflurane-induced neurotoxicity through blocking NLRP3/caspase-1 pathway. In consistent with in vivo studies, ChIV was also able to repress sevoflurane-induced apoptosis and neuroinflammation in primary neurons. Furthermore, pretreatment with NLRP3/caspase-1 pathway inhibitor (MCC950) significantly augmented the neuroprotective effect of ChIV.

Conclusion

Our finding confirmed that ChIV provides a neuroprotective effect against sevoflurane-induced neuroinflammation and cognitive impairment by blocking the NLRP3/caspase-1 pathway, which may be an effective strategy for the clinical treatment of elderly patients with POCD induced by anesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Feinkohl I, Winterer G, Spies CD, Pischon T. Cognitive reserve and the risk of postoperative cognitive dysfunction. Dtsch Arztebl Int. 2017;114(7):110–7. https://doi.org/10.3238/arztebl.2017.0110.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lachmann G, Kant I, Lammers F, Windmann V, Spies C, Speidel S, Borchers F, Hadzidiakos D, Hendrikse J, Winterer G, de Bresser J. Cerebral microbleeds are not associated with postoperative delirium and postoperative cognitive dysfunction in older individuals. PLoS One. 2019;14(6):e0218411. https://doi.org/10.1371/journal.pone.0218411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang W, Kong LS, Zhu XX, Wang RX, Liu Y, Chen LR. Effect of dexmedetomidine on postoperative cognitive dysfunction and inflammation in patients after general anaesthesia: a PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore). 2019;98(18):e15383. https://doi.org/10.1097/md.0000000000015383.

    Article  CAS  Google Scholar 

  4. Quan C, Chen J, Luo Y, Zhou L, He X, Liao Y, Chou J, Guo Q, Chen AF, Wen O. BIS-guided deep anesthesia decreases short-term postoperative cognitive dysfunction and peripheral inflammation in elderly patients undergoing abdominal surgery. Brain Behav. 2019;9(4):e01238. https://doi.org/10.1002/brb3.1238.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yang F, Shan Y, Tang Z, Wu X, Bi C, Zhang Y, Gao Y, Liu H. The neuroprotective effect of hemin and the related mechanism in sevoflurane exposed neonatal rats. Front Neurosci. 2019;13:537. https://doi.org/10.3389/fnins.2019.00537.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cao Y, Li Z, Ma L, Yang N, Guo X. Isoflurane-induced postoperative neurovascular and cognitive dysfunction is associated with VEGF overexpression in aged rats. J Mol Neurosci. 2019. https://doi.org/10.1007/s12031-019-01350-8.

    Article  PubMed  Google Scholar 

  7. Nishigaki A, Kawano T, Iwata H, Aoyama B, Yamanaka D, Tateiwa H, Shigematsu-Locatelli M, Eguchi S, Locatelli FM, Yokoyama M. Acute and long-term effects of haloperidol on surgery-induced neuroinflammation and cognitive deficits in aged rats. J Anesth. 2019;33(3):416–25. https://doi.org/10.1007/s00540-019-02646-0.

    Article  PubMed  Google Scholar 

  8. Li N, Zhang X, Dong H, Hu Y, Qian Y. Bidirectional relationship of mast cells-neurovascular unit communication in neuroinflammation and its involvement in POCD. Behav Brain Res. 2017;322(Pt A):60–9. https://doi.org/10.1016/j.bbr.2017.01.006.

    Article  CAS  PubMed  Google Scholar 

  9. Kok WF, Koerts J, Tucha O, Scheeren TW, Absalom AR. Neuronal damage biomarkers in the identification of patients at risk of long-term postoperative cognitive dysfunction after cardiac surgery. Anaesthesia. 2017;72(3):359–69. https://doi.org/10.1111/anae.13712.

    Article  CAS  PubMed  Google Scholar 

  10. Hovens IB, van Leeuwen BL, Mariani MA, Kraneveld AD, Schoemaker RG. Postoperative cognitive dysfunction and neuroinflammation; cardiac surgery and abdominal surgery are not the same. Brain Behav Immun. 2016;54:178–93. https://doi.org/10.1016/j.bbi.2016.02.003.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Z, Li X, Li F, An L. Berberine alleviates postoperative cognitive dysfunction by suppressing neuroinflammation in aged mice. Int Immunopharmacol. 2016;38:426–33. https://doi.org/10.1016/j.intimp.2016.06.031.

    Article  CAS  PubMed  Google Scholar 

  12. Sha HY, Zhao JB, Sha MX, Guo SM. Effects of Vitamin B12 on postoperative cognitive dysfunction induced by isoflurane anesthesia in rats. Eur Rev Med Pharmacol Sci. 2017;21(8):1959–66.

    PubMed  Google Scholar 

  13. Ye JS, Chen L, Lu YY, Lei SQ, Peng M, Xia ZY. Honokiol-mediated mitophagy ameliorates postoperative cognitive impairment induced by surgery/sevoflurane via inhibiting the activation of NLRP3 inflammasome in the hippocampus. Oxid Med Cell Longev. 2019;2019:8639618. https://doi.org/10.1155/2019/8639618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wei P, Yang F, Zheng Q, Tang W, Li J. The potential role of the NLRP3 inflammasome activation as a link between mitochondria ROS generation and neuroinflammation in postoperative cognitive dysfunction. Front Cell Neurosci. 2019;13:73. https://doi.org/10.3389/fncel.2019.00073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ashraf A, Mahmoud PA, Reda H, Mansour S, Helal MH, Michel HE, Nasr M. Silymarin and silymarin nanoparticles guard against chronic unpredictable mild stress induced depressive-like behavior in mice: involvement of neurogenesis and NLRP3 inflammasome. J Psychopharmacol. 2019;33(5):615–31. https://doi.org/10.1177/0269881119836221.

    Article  CAS  PubMed  Google Scholar 

  16. Ystgaard MB, Scheffler K, Suganthan R, Bjoras M, Ranheim T, Sagen EL, Halvorsen B, Saugstad OD, Yndestad A. Neuromodulatory effect of NLRP3 and ASC in neonatal hypoxic ischemic encephalopathy. Neonatology. 2019;115(4):355–62. https://doi.org/10.1159/000497200.

    Article  CAS  PubMed  Google Scholar 

  17. Peng J, Zhang P, Zheng H, Ren YQ, Yan H. Dexmedetomidine reduces hippocampal microglia inflammatory response induced by surgical injury through inhibiting NLRP3. Chin J Traumatol. 2019;22(3):161–5. https://doi.org/10.1016/j.cjtee.2019.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Detrait ER, Danis B, Lamberty Y, Foerch P. Peripheral administration of an anti-TNF-alpha receptor fusion protein counteracts the amyloid induced elevation of hippocampal TNF-alpha levels and memory deficits in mice. Neurochem Int. 2014;72:10–3. https://doi.org/10.1016/j.neuint.2014.04.001.

    Article  CAS  PubMed  Google Scholar 

  19. Alam A, Hana Z, Jin Z, Suen KC, Ma D. Surgery, neuroinflammation and cognitive impairment. EBioMedicine. 2018;37:547–56. https://doi.org/10.1016/j.ebiom.2018.10.021.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Skvarc DR, Berk M, Byrne LK, Dean OM, Dodd S, Lewis M, Marriott A, Moore EM, Morris G, Page RS, Gray L. Post-operative cognitive dysfunction: an exploration of the inflammatory hypothesis and novel therapies. Neurosci Biobehav Rev. 2018;84:116–33. https://doi.org/10.1016/j.neubiorev.2017.11.011.

    Article  PubMed  Google Scholar 

  21. Locatelli FM, Kawano T, Iwata H, Aoyama B, Eguchi S, Nishigaki A, Yamanaka D, Tateiwa H, Shigematsu-Locatelli M, Yokoyama M. Resveratrol-loaded nanoemulsion prevents cognitive decline after abdominal surgery in aged rats. J Pharmacol Sci. 2018;137(4):395–402. https://doi.org/10.1016/j.jphs.2018.08.006.

    Article  CAS  PubMed  Google Scholar 

  22. Qi D, Yang X, Chen J, Li F, Shi X, Zhang C, Yang Z. Determination of chikusetsusaponin V and chikusetsusaponin IV in rat plasma by liquid chromatography-mass spectrometry and its application to a preliminary pharmacokinetic study. Biomed Chromatogr. 2013;27(11):1568–73. https://doi.org/10.1002/bmc.2961.

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Zhang T, Cui J, Jia N, Wu Y, Xi M, Wen A. Chikusetsu saponin IVa regulates glucose uptake and fatty acid oxidation: implications in antihyperglycemic and hypolipidemic effects. J Pharm Pharmacol. 2015;67(7):997–1007. https://doi.org/10.1111/jphp.12392.

    Article  CAS  PubMed  Google Scholar 

  24. Yang J, Qian S, Cai X, Lu W, Hu C, Sun X, Yang Y, Yu Q, Gao SP, Cao P. Chikusetsusaponin IVa butyl ester (CS-IVa-Be), a novel IL6R antagonist, inhibits IL6/STAT3 signaling pathway and induces cancer cell apoptosis. Mol Cancer Ther. 2016;15(6):1190–200. https://doi.org/10.1158/1535-7163.mct-15-0551.

    Article  CAS  PubMed  Google Scholar 

  25. Wang L, Yuan D, Zheng J, Wu X, Wang J, Liu X, He Y, Zhang C, Liu C, Wang T, Zhou Z. Chikusetsu saponin IVa attenuates isoprenaline-induced myocardial fibrosis in mice through activation autophagy mediated by AMPK/mTOR/ULK1 signaling. Phytomedicine. 2019;58:152764. https://doi.org/10.1016/j.phymed.2018.11.024.

    Article  CAS  PubMed  Google Scholar 

  26. Yuan C, Liu C, Wang T, He Y, Zhou Z, Dun Y, Zhao H, Ren D, Wang J, Zhang C, Yuan D. Chikusetsu saponin IVa ameliorates high fat diet-induced inflammation in adipose tissue of mice through inhibition of NLRP3 inflammasome activation and NF-kappaB signaling. Oncotarget. 2017;8(19):31023–40. https://doi.org/10.18632/oncotarget.16052.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen X, Wu QS, Meng FC, Tang ZH, Chen X, Lin LG, Chen P, Qiang WA, Wang YT, Zhang QW, Lu JJ. Chikusetsusaponin IVa methyl ester induces G1 cell cycle arrest, triggers apoptosis and inhibits migration and invasion in ovarian cancer cells. Phytomedicine. 2016;23(13):1555–65. https://doi.org/10.1016/j.phymed.2016.09.002.

    Article  CAS  PubMed  Google Scholar 

  28. Yuan D, Wan JZ, Deng LL, Zhang CC, Dun YY, Dai YW, Zhou ZY, Liu CQ, Wang T. Chikusetsu saponin V attenuates MPP+-induced neurotoxicity in SH-SY5Y cells via regulation of Sirt1/Mn-SOD and GRP78/caspase-12 pathways. Int J Mol Sci. 2014;15(8):13209–22. https://doi.org/10.3390/ijms150813209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fang X, Han Q, Li S, Zhao Y, Luo A. Chikusetsu saponin IVa attenuates isoflurane-induced neurotoxicity and cognitive deficits via SIRT1/ERK1/2 in developmental rats. Am J Transl Res. 2017;9(9):4288–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wan J, Deng L, Zhang C, Yuan Q, Liu J, Dun Y, Zhou Z, Zhao H, Liu C, Yuan D, Wang T. Chikusetsu saponin V attenuates H2O2-induced oxidative stress in human neuroblastoma SH-SY5Y cells through Sirt1/PGC-1alpha/Mn-SOD signaling pathways. Can J Physiol Pharmacol. 2016;94(9):919–28. https://doi.org/10.1139/cjpp-2015-0262.

    Article  PubMed  Google Scholar 

  31. Zhou H, Li S, Wang G. Euxanthone ameliorates sevoflurane-induced neurotoxicity in neonatal mice. J Mol Neurosci. 2019;68(2):275–86. https://doi.org/10.1007/s12031-019-01303-1.

    Article  CAS  PubMed  Google Scholar 

  32. Huang L, Huang K, Ning H. Hispidulin prevents sevoflurane- Induced memory dysfunction in aged rats. Biomed Pharmacother. 2018;97:412–22. https://doi.org/10.1016/j.biopha.2017.10.142.

    Article  CAS  PubMed  Google Scholar 

  33. Han M, Gao H, Xie J, Yuan YP, Yuan Q, Gao MQ, Liu KL, Chen XH, Han YT, Han ZW. Hispidulin induces ER stress-mediated apoptosis in human hepatocellular carcinoma cells in vitro and in vivo by activating AMPK signaling pathway. Acta Pharmacol Sin. 2019;40(5):666–76. https://doi.org/10.1038/s41401-018-0159-7.

    Article  CAS  PubMed  Google Scholar 

  34. Pellegrini C, Fornai M, Antonioli L, Blandizzi C, Calderone V. Phytochemicals as novel therapeutic strategies for nlrp3 inflammasome-related neurological, metabolic, and inflammatory diseases. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20122876.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ai QD, Chen C, Chu S, Zhang Z, Luo Y, Guan F, Lin M, Liu D, Wang S, Chen N. IMM-H004 therapy for permanent focal ischemic cerebral injury via CKLF1/CCR4-mediated NLRP3 inflammasome activation. Transl Res. 2019. https://doi.org/10.1016/j.trsl.2019.05.007.

    Article  PubMed  Google Scholar 

  36. Nakao S, Yamamoto T, Kimura S, Mino T, Iwamoto T. Brain white matter lesions and postoperative cognitive dysfunction: a review. J Anesth. 2019;33(2):336–40. https://doi.org/10.1007/s00540-019-02613-9.

    Article  PubMed  Google Scholar 

  37. Safavynia SA, Goldstein PA. The role of neuroinflammation in postoperative cognitive dysfunction: moving from hypothesis to treatment. Front Psychiatry. 2018;9:752. https://doi.org/10.3389/fpsyt.2018.00752.

    Article  PubMed  Google Scholar 

  38. Kotekar N, Shenkar A, Nagaraj R. Postoperative cognitive dysfunction—current preventive strategies. Clin Interv Aging. 2018;13:2267–73. https://doi.org/10.2147/cia.s133896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luo A, Yan J, Tang X, Zhao Y, Zhou B, Li S. Postoperative cognitive dysfunction in the aged: the collision of neuroinflammaging with perioperative neuroinflammation. Inflammopharmacology. 2019;27(1):27–37. https://doi.org/10.1007/s10787-018-00559-0.

    Article  CAS  PubMed  Google Scholar 

  40. Li D, Liu L, Li L, Li X, Huang B, Zhou C, Zhang Z, Wang C, Dong P, Zhang X, Yang B, Zhang L. Sevoflurane induces exaggerated and persistent cognitive decline in a type II diabetic rat model by aggregating hippocampal inflammation. Front Pharmacol. 2017;8:886. https://doi.org/10.3389/fphar.2017.00886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu WI, Lu DP. Impact of chinese herbal medicine on american society and health care system: perspective and concern. Evid Based Complement Alternat Med. 2014;2014:251891. https://doi.org/10.1155/2014/251891.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen PJ, Shang AQ, Wang WW, Yang JP. Astragaloside suppresses tumor necrosis factor receptor-associated factor 5 signaling pathway and alleviates neurodegenerative changes in retinal pigment epithelial cells induced by isoflurane. J Cell Biochem. 2019;120(1):1028–37. https://doi.org/10.1002/jcb.27599.

    Article  CAS  PubMed  Google Scholar 

  43. Song X, Wang W, Zhang X, Jiang Y, Yang X, Deng C, Yue Z, Tang Z. Deglucose chikusetsusaponin IVa isolated from rhizoma panacis majoris induces apoptosis in human HepG2 hepatoma cells. Mol Med Rep. 2015;12(4):5494–500. https://doi.org/10.3892/mmr.2015.4035.

    Article  CAS  PubMed  Google Scholar 

  44. Wang H, Qi J, Li L, Wu T, Wang Y, Wang X, Ning Q. Inhibitory effects of chikusetsusaponin IVa on lipopolysaccharide-induced pro-inflammatory responses in THP-1 cells. Int J Immunopathol Pharmacol. 2015;28(3):308–17. https://doi.org/10.1177/0394632015589519.

    Article  CAS  PubMed  Google Scholar 

  45. Duan J, Yin Y, Wei G, Cui J, Zhang E, Guan Y, Yan J, Guo C, Zhu Y, Mu F, Weng Y, Wang Y, Wu X, Xi M, Wen A. Chikusetsu saponin IVa confers cardioprotection via SIRT1/ERK1/2 and homer1a pathway. Sci Rep. 2015;5:18123. https://doi.org/10.1038/srep18123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yin J, Seo CS, Hwang IH, Lee MW, Song KH. Anti-obesity activities of chikusetsusaponin IVa and Dolichos lablab L. Seeds. Nutrients. 2018. https://doi.org/10.3390/nu10091221.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lee HJ, Shin JS, Lee WS, Shim HY, Park JM, Jang DS, Lee KT. Chikusetsusaponin IVa methyl ester isolated from the roots of achyranthes japonica suppresses LPS-induced iNOS, TNF-alpha, IL-6, and IL-1beta expression by NF-kappaB and AP-1 inactivation. Biol Pharm Bull. 2016;39(5):657–64. https://doi.org/10.1248/bpb.b15-00572.

    Article  CAS  PubMed  Google Scholar 

  48. Li L, Yu Q, Liang W. Molecular pathways of mitochondrial dysfunctions: possible cause of cell death in anesthesia-induced developmental neurotoxicity. Brain Res Bull. 2015;110:14–9. https://doi.org/10.1016/j.brainresbull.2014.10.011.

    Article  CAS  PubMed  Google Scholar 

  49. Li B, Feng XJ, Hu XY, Chen YP, Sha JC, Zhang HY, Fan HG. Effect of melatonin on attenuating the isoflurane-induced oxidative damage is related to PKCalpha/Nrf2 signaling pathway in developing rats. Brain Res Bull. 2018;143:9–18. https://doi.org/10.1016/j.brainresbull.2018.09.018.

    Article  CAS  PubMed  Google Scholar 

  50. Duan J, Yin Y, Cui J, Yan J, Zhu Y, Guan Y, Wei G, Weng Y, Wu X, Guo C, Wang Y, Xi M, Wen A. Chikusetsu saponin IVa ameliorates cerebral ischemia reperfusion injury in diabetic mice via adiponectin-mediated AMPK/GSK-3beta pathway in vivo and in vitro. Mol Neurobiol. 2016;53(1):728–43. https://doi.org/10.1007/s12035-014-9033-x.

    Article  CAS  PubMed  Google Scholar 

  51. Chen X, Zhang X, Xue L, Hao C, Liao W, Wan Q. Treatment with enriched environment reduces neuronal apoptosis in the periinfarct cortex after cerebral ischemia/reperfusion injury. Cell Physiol Biochem. 2017;41(4):1445–566. https://doi.org/10.1159/000468368.

    Article  CAS  PubMed  Google Scholar 

  52. Hu X, Hu X, Huang G. LncRNA MALAT1 is involved in sevoflurane-induced neurotoxicity in developing rats. J Cell Biochem. 2019. https://doi.org/10.1002/jcb.29127.

    Article  PubMed  Google Scholar 

  53. Chen Z, Wang E, Hu R, Sun Y, Zhang L, Jiang J, Zhang Y, Jiang H. Tetranectin gene deletion induces Parkinson's disease by enhancing neuronal apoptosis. Biochem Biophys Res Commun. 2015;468(1–2):400–7. https://doi.org/10.1016/j.bbrc.2015.10.118.

    Article  CAS  PubMed  Google Scholar 

  54. Ye X, Shen T, Hu J, Zhang L, Zhang Y, Bao L, Cui C, Jin G, Zan K, Zhang Z, Yang X, Shi H, Zu J, Yu M, Song C, Wang Y, Qi S, Cui G. Purinergic 2X7 receptor/NLRP3 pathway triggers neuronal apoptosis after ischemic stroke in the mouse. Exp Neurol. 2017;292:46–55. https://doi.org/10.1016/j.expneurol.2017.03.002.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang B, Zhang JW, Wang WP, Dong RF, Tian S, Zhang C. Effect of lamotrigine on epilepsy-induced cognitive impairment and hippocampal neuronal apoptosis in pentylenetetrazole-kindled animal model. Synapse. 2017. https://doi.org/10.1002/syn.21945.

    Article  PubMed  Google Scholar 

  56. Xu J, Huai Y, Meng N, Dong Y, Liu Z, Qi Q, Hu M, Fan M, Jin W, Lv P. L-3-n-butylphthalide activates Akt/mTOR signaling, inhibits neuronal apoptosis and autophagy and improves cognitive impairment in mice with repeated cerebral ischemia-reperfusion injury. Neurochem Res. 2017;42(10):2968–81. https://doi.org/10.1007/s11064-017-2328-3.

    Article  CAS  PubMed  Google Scholar 

  57. Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev. 2015;265(1):35–52. https://doi.org/10.1111/imr.12286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu Q, Zhang D, Hu D, Zhou X, Zhou Y. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol. 2018;103:115–24. https://doi.org/10.1016/j.molimm.2018.09.010.

    Article  CAS  PubMed  Google Scholar 

  59. Wang Z, Meng S, Cao L, Chen Y, Zuo Z, Peng S. Critical role of NLRP3-caspase-1 pathway in age-dependent isoflurane-induced microglial inflammatory response and cognitive impairment. J Neuroinflammation. 2018;15(1):109. https://doi.org/10.1186/s12974-018-1137-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fan Y, Du L, Fu Q, Zhou Z, Zhang J, Li G, Wu J. Inhibiting the NLRP3 inflammasome with MCC950 ameliorates isoflurane-induced pyroptosis and cognitive impairment in aged mice. Front Cell Neurosci. 2018;12:426. https://doi.org/10.3389/fncel.2018.00426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cieniewicz B, Dong Q, Li G, Forrest JC, Mounce BC, Tarakanova VL, van der Velden A, Krug LT. Murine gammaherpesvirus 68 pathogenesis is independent of caspase-1 and caspase-11 in mice and impairs interleukin-1beta production upon extrinsic stimulation in culture. J Virol. 2015;89(13):6562–74. https://doi.org/10.1128/jvi.00658-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xi G, Gao J, Wan B, Zhan P, Xu W, Lv T, Song Y. GSDMD is required for effector CD8(+) T cell responses to lung cancer cells. Int Immunopharmacol. 2019;74:105713. https://doi.org/10.1016/j.intimp.2019.105713.

    Article  CAS  PubMed  Google Scholar 

  63. Lee C, Do HTT, Her J, Kim Y, Seo D, Rhee I. Inflammasome as a promising therapeutic target for cancer. Life Sci. 2019. https://doi.org/10.1016/j.lfs.2019.116593.

    Article  PubMed  Google Scholar 

  64. Sun L, Ma W, Gao W, Xing Y, Chen L, Xia Z, Zhang Z, Dai Z. Propofol directly induces caspase-1-dependent macrophage pyroptosis through the NLRP3-ASC inflammasome. Cell Death Dis. 2019;10(8):542. https://doi.org/10.1038/s41419-019-1761-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wilson KD, Ochoa LF, Solomon OD, Pal R, Cardona SM, Carpio VH, Keiser PH, Cardona AE, Vargas G, Stephens R. Elimination of intravascular thrombi prevents early mortality and reduces gliosis in hyper-inflammatory experimental cerebral malaria. J Neuroinflammation. 2018;15(1):173. https://doi.org/10.1186/s12974-018-1207-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study is supported by funding from hospital to young physicians.

Author information

Authors and Affiliations

Authors

Contributions

AS: designed the study, performed the experiments and wrote the paper. JF and SF: performed the experiments and collected the data. JW: analyzed the data.

Corresponding author

Correspondence to Anmin Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 655 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, A., Fei, J., Feng, S. et al. Chikusetsu saponin IVa alleviated sevoflurane-induced neuroinflammation and cognitive impairment by blocking NLRP3/caspase-1 pathway. Pharmacol. Rep 72, 833–845 (2020). https://doi.org/10.1007/s43440-020-00078-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-020-00078-2

Keywords

Navigation