Skip to main content

Advertisement

Log in

A-phase classification using convolutional neural networks

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A series of short events, called A-phases, can be observed in the human electroencephalogram (EEG) during Non-Rapid Eye Movement (NREM) sleep. These events can be classified in three groups (A1, A2, and A3) according to their spectral contents, and are thought to play a role in the transitions between the different sleep stages. A-phase detection and classification is usually performed manually by a trained expert, but it is a tedious and time-consuming task. In the past two decades, various researchers have designed algorithms to automatically detect and classify the A-phases with varying degrees of success, but the problem remains open. In this paper, a different approach is proposed: instead of attempting to design a general classifier for all subjects, we propose to train ad-hoc classifiers for each subject using as little data as possible, in order to drastically reduce the amount of time required from the expert. The proposed classifiers are based on deep convolutional neural networks using the log-spectrogram of the EEG signal as input data. Results are encouraging, achieving average accuracies of 80.31% when discriminating between A-phases and non A-phases, and 71.87% when classifying among A-phase sub-types, with only 25% of the total A-phases used for training. When additional expert-validated data is considered, the sub-type classification accuracy increases to 78.92%. These results show that a semi-automatic annotation system with assistance from an expert could provide a better alternative to fully automatic classifiers.

A/N Deep Learning Classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wolk R, Somers VK (2007) Sleep and the metabolic syndrome. Exp Physiol 92(1):67–78

    Article  PubMed  Google Scholar 

  2. David F, Dinges FP, Williams K, Gillen KA, Powell JW, Ott GE, Aptowicz C, Pack AI (1997) Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4–5 hours per night. Sleep 20(4):267–277

    Google Scholar 

  3. Altevogt BM, Colten HR et al (2006) Sleep disorders and sleep deprivation: an unmet public health problem. National Academies Press

  4. Terzano MG, Parrino L, Smerieri A, Chervin R, Chokroverty S, Guilleminault C, Hirshkowitz M, Mahowald M, Moldofsky H, Rosa A et al (2002) Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (cap) in human sleep. Sleep Med 3(2):187–199

    Article  PubMed  Google Scholar 

  5. Ferini-Strambi L, Bianchi A, Zucconi M, Oldani A, Castronovo V, Smirne S (2000) The impact of cyclic alternating pattern on heart rate variability during sleep in healthy young adults. Clin Neurophysiol 111(1):99–101

    Article  CAS  PubMed  Google Scholar 

  6. Ferri R, Parrino L, Smerieri A, Terzano MG, Elia M, Musumeci SA, Pettinato S (2000) Cyclic alternating pattern and spectral analysis of heart rate variability during normal sleep. J Sleep Res 9(1):13–18

    Article  CAS  PubMed  Google Scholar 

  7. Sforza E, Jouny C, Ibanez V (2000) Cardiac activation during arousal in humans: further evidence for hierarchy in the arousal response. Clin Neurophysiol 111(9):1611–1619

    Article  CAS  PubMed  Google Scholar 

  8. Terzano MG, Parrino L (2000) Origin and significance of the cyclic alternating pattern (cap). Sleep Med Rev 4(1):101–123

    Article  PubMed  Google Scholar 

  9. Terzano MG, Parrino L (1993) Clinical applications of cyclic alternating pattern. Physiol Behav 54(4):807–813

    Article  CAS  PubMed  Google Scholar 

  10. Ferri R, Bruni O, Miano S, Smerieri A, Spruyt K, Terzano MG (2005) Inter-rater reliability of sleep cyclic alternating pattern (cap) scoring and validation of a new computer-assisted cap scoring method. Clin Neurophysiol 116(3):696–707

    Article  PubMed  Google Scholar 

  11. Ferri R, Bruni O, Miano S, Plazzi G, Terzano MG (2005) All-night eeg power spectral analysis of the cyclic alternating pattern components in young adult subjects. Clin Neurophysiol 116(10):2429–2440

    Article  PubMed  Google Scholar 

  12. De Carli F, Nobili L, Beelke M, Watanabe T, Smerieri A, Parrino L (2004) Mario Giovanni Terzano, and Franco Ferrillo. Quantitative analysis of sleep eeg microstructure in the time–frequency domain. Brain Res Bull 63(5):399–405

    Article  PubMed  Google Scholar 

  13. Navona C, Barcaro U, Bonanni E, Di Martino F, Maestri M, Murri L (2002) An automatic method for the recognition and classification of the a-phases of the cyclic alternating pattern. Clin Neurophysiol 113(11):1826–1831

    Article  PubMed  Google Scholar 

  14. Mariani S, Grassi A, Mendez MO, Parrino L, Terzano MG, Bianchi AM (2011) Automatic detection of cap on central and fronto-central eeg leads via support vector machines. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 1491–1494. IEEE

    Chapter  Google Scholar 

  15. Mariani S, Manfredini E, Rosso V, Grassi A, Mendez MO, Alba A, Matteucci M, Parrino L, Terzano MG, Cerutti S et al (2012) Efficient automatic classifiers for the detection of a phases of the cyclic alternating pattern in sleep. Med Biol Eng Comput 50(4):359–372

    Article  PubMed  Google Scholar 

  16. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press

  17. Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR (2018) Deep learning for healthcare applications based on physiological signals: A review. Comput Methods Programs Biomed 161:1–13

    Article  PubMed  Google Scholar 

  18. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  PubMed  Google Scholar 

  19. Shen D, Wu G, Suk H-I (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yildirim Ö (2018) A novel wavelet sequence based on deep bidirectional lstm network model for ecg signal classification. Comput Biol Med 96:189–202

    Article  PubMed  Google Scholar 

  21. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, Tan RS (2017) A deep convolutional neural network model to classify heartbeats. Comput Biol Med 89:389–396

    Article  PubMed  Google Scholar 

  22. Yıldırım Ö, Pławiak P, Tan R-S, Acharya UR (2018) Arrhythmia detection using deep convolutional neural network with long duration ecg signals. Comput Biol Med 102:411–420

    Article  PubMed  Google Scholar 

  23. Oh SL, Hagiwara Y, Raghavendra U, Yuvaraj R, Arunkumar N, Murugappan M, Acharya UR (2018) A deep learning approach for parkinson’s disease diagnosis from eeg signals. Neural Comput Appl:1–7

  24. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H (2018) Deep convolutional neural network for the automated detection and diagnosis of seizure using eeg signals. Comput Biol Med 100:270–278

    Article  PubMed  Google Scholar 

  25. Yıldırım Ö, Baloglu UB, Acharya UR (2018) A deep convolutional neural network model for automated identification of abnormal eeg signals. Neural Comput Appl:1–12

  26. Antoniades A, Spyrou L, Martin-Lopez D, Valentin A, Alarcon G, Sanei S, Took CC (2018) Deep neural architectures for mapping scalp to intracranial eeg. Int J Neural Syst 28(08):1850009

    Article  PubMed  Google Scholar 

  27. Supratak A, Dong H, Wu C, Guo Y (2017) Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg. IEEE Transac Neural Syst Rehabil Eng 25(11):1998–2008

    Article  Google Scholar 

  28. Tsinalis O, Matthews PM, Guo Y (2016) Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders. Ann Biomed Eng 44(5):1587–1597

    Article  PubMed  Google Scholar 

  29. Tripathy RK, Acharya UR (2018) Use of features from rr-time series and eeg signals for automated classification of sleep stages in deep neural network framework. Biocybernetics Biomed Eng 38(4):890–902

    Article  Google Scholar 

  30. Chambon S, Galtier MN, Arnal PJ, Wainrib G, Gramfort A (2018) A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Transac Neural Syst Rehabil Eng 26(4):758–769

    Article  Google Scholar 

  31. Michielli N, Acharya UR, Molinari F (2019) Cascaded lstm recurrent neural network for automated sleep stage classification using single-channel eeg signals. Comput Biol Med 106:71–81

    Article  PubMed  Google Scholar 

  32. Rosa AC, Parrino L, Terzano MG (1999) Automatic detection of cyclic alternating pattern (cap) sequences in sleep: preliminary results. Clin Neurophysiol 110(4):585–592

    Article  CAS  PubMed  Google Scholar 

  33. Rosa AC, Kemp B, Paiva T, da Silva FHL, Kamphuisen HAC (1991) A model-based detector of vertex waves and k complexes in sleep electroencephalogram. Electroencephal Clin Neurophysiol 78(1):71–79

    Article  Google Scholar 

  34. Barcaro U, Bonanni E, Maestri M, Murri L, Parrino L, Terzano MG (2004) A general automatic method for the analysis of nrem sleep microstructure. Sleep Med 5(6):567–576

    Article  PubMed  Google Scholar 

  35. Mendez MO, Alba A, Chouvarda I, Milioli G, Grassi A, Terzano MG, Parrino L (2014) On separability of a-phases during the cyclic alternating pattern. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 2253–2256. IEEE

    Chapter  Google Scholar 

  36. Mendez MO, Chouvarda I, Alba A, Bianchi AM, Grassi A, Arce-Santana E, Milioli G, Terzano MG, Parrino L (2016) Analysis of a-phase transitions during the cyclic alternating pattern under normal sleep. Med Biol Eng Comput 54(1):133–148

    Article  PubMed  Google Scholar 

  37. Karimzadeh F, Seraj E, Boostani R, Torabi-Nami M (2015) Presenting efficient features for automatic cap detection in sleep eeg signals. In: 2015 38th International Conference on Telecommunications and Signal Processing (TSP), pp 448–452. IEEE

    Chapter  Google Scholar 

  38. Mendonça F, Fred A (2018) Sheikh Shanawaz Mostafa, Fernando Morgado-Dias, and Antonio G Ravelo-García. Automatic detection of cyclic alternating pattern. Neural Comput & Applic:1–11

  39. Machado F, Teixeira C, Santos C, Bento C, Sales F, Dourado A (2016) A-phases subtype detection using different classification methods. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 1026–1029. IEEE

    Chapter  Google Scholar 

  40. Machado F, Sales F, Santos C, Dourado A, Teixeira CA (2018) A knowledge discovery methodology from eeg data for cyclic alternating pattern detection. Biomed Eng Online 17(1):185

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mostafa SS, Mendonça F, Ravelo-García A, Morgado-Dias F (2018) Combination of deep and shallow networks for cyclic alternating patterns detection. In: 2018 13th APCA International Conference on Control and Soft Computing (CONTROLO), pp 98–103. IEEE

    Chapter  Google Scholar 

  42. Hartmann S, Baumert M (2019) Automatic a-phase detection of cyclic alternating patterns in sleep using dynamic temporal information. IEEE Transac Neural Syst Rehabil Eng 27(9):1695–1703

    Article  Google Scholar 

  43. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE (2000) Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220

    Article  CAS  PubMed  Google Scholar 

  44. Conrad Iber The aasm manual for the scoring of sleep and associated events: rules. Terminology and Technical Specification, 2007

  45. Haghighi-Mood A, Torry JN (1997) Time frequency analysis of systolic murmurs. time-frequency analysis of biomedical signals. In: IEE Colloquium on Year, pp 2/1–2/3. IEE

    Google Scholar 

  46. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: NIPS’12 Proceedings of the 25th International Conference on Neural Information Processing Systems, pp 1097–1105. NIPS

    Google Scholar 

  47. I. Arel, D. Rose, and T. Karnowski. Deep machine learning–a new frontier in artificial intelligence research [research frontier]. IEEE Comput Int Mag, 5:13–18, 2010

  48. Ciresan D, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. In: 2012 Computer Vision and Pattern Recognition (CVPR), pp 3642–3649. IEEE

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valdemar Arce-Guevara.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arce-Santana, E.R., Alba, A., Mendez, M.O. et al. A-phase classification using convolutional neural networks. Med Biol Eng Comput 58, 1003–1014 (2020). https://doi.org/10.1007/s11517-020-02144-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02144-6

Keywords

Navigation