Skip to main content

Advertisement

Log in

Assessment of Protein Profiles of RNAlater Stored and Fresh PBMC Cells Using Different Protein Extraction Buffers

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

For proteome analyses, the tissue samples are mostly preserved either snap frozen or formalin-fixed, paraffin-embedded form. Use of RNAlater—a non-toxic solution primarily used to stabilize the RNA content of samples—in tissue preservation for proteome analysis recently described equally reliable with snap-frozen preservation in human tissues. Even though RNALater storage has great potential in the preservation of Peripheral Blood Mononuclear Cells (PBMC), its impact on the results of proteome analysis is poorly described at qualitative and quantitative measures. The present study investigated protein profiles of RNAlater preserved and fresh PBMCs using three extraction buffers viz. Triton X-100, RIPA and SDS. Proteins are separated in SDS-PAGE and quantified using densitometry. On an average 19.3 bands from fresh and 15.6 bands from RNAlater storage cells were obtained with a molecular weight ranging from 25 to > 250 kDa. RNAlater storage generated a fewer number and lesser quantity of low molecular weight proteins while yielded a similar or high quantity of high molecular weight protein fractions. The principal component analysis showed that Triton X-100 is inferior as compared to SDS and RIPA with respect to their protein bands and quantity yielded. While RNAlater is effective in preserving PBMC for proteome analysis, our findings warrant caution in its use in proteomics experiments especially if the target is low molecular weight proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bennike TB, Kastaniegaard K, Padurariu S et al (2016) Comparing the proteome of snap frozen, RNAlater preserved, and formalin-fixed paraffin-embedded human tissue samples. EuPA Open Proteom 10:9–18. https://doi.org/10.1016/j.euprot.2015.10.001

    Article  PubMed  Google Scholar 

  2. Tanca A, Abbondio M, Pisanu S et al (2014) Critical comparison of sample preparation strategies for shotgun proteomic analysis of insights from liver tissue. Clin Proteom 11:28

    Article  Google Scholar 

  3. Kruse CPS, Basu P, Luesse DR, Wyatt SE (2017) Transcriptome and proteome responses in RNAlater preserved the tissue of Arabidopsis thaliana. PLoS ONE 12:e0175943

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bennike TB, Kastaniegaard K, Padurariu S et al (2016) Proteome stability analysis of snap frozen, RNAlater preserved, and formalin-fixed paraffin-embedded human colon mucosal biopsies. Data Br 6:942–947

    Article  Google Scholar 

  5. Saito MA, Bulygin VV, Moran DM et al (2011) Examination of microbial proteome preservation techniques applicable to autonomous environmental sample collection. Front Microbiol 2:1–10. https://doi.org/10.3389/fmicb.2011.00215

    Article  Google Scholar 

  6. Feist P, Hummon AB (2015) Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples. Int J Mol Sci 16:3537–3563. https://doi.org/10.3390/ijms16023537

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nejadi N, Masti SM, Tavirani MR (2014) Comparison of three routine protein precipitation methods: acetone, TCA/acetone wash and TCA/acetone. J Paramed Sci 5:58–60

    Google Scholar 

  8. Buxton TB, Crockett JK, Moore WL, Rissing JP (1979) Protein precipitation by acetone for the analysis of polyethylene glycol in intestinal perfusion fluid. Gastroenterology 76:820–824

    Article  PubMed  Google Scholar 

  9. Wessel DM, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  PubMed  Google Scholar 

  10. Arnold U, Ulbrich-Hofmann R (1999) Quantitative protein precipitation from guanidine hydrochloride-containing solutions by sodium deoxycholate/trichloroacetic acid. Anal Biochem 271:197–199

    Article  PubMed  Google Scholar 

  11. Labs Kendrick (2005) Ethanol precipitation of protein: protocol and % recovery. Kendrick Labs, Madison, pp 1–3

    Google Scholar 

  12. Rabilloud T, Luche S, Santoni V, Chevallet M (2007) Detergents and chaotropes for protein solubilization before two-dimensional electrophoresis. In: Plant proteomics. Springer, New York, pp 111–119

    Google Scholar 

  13. Abbaraju NV, Cai Y, Rees BB (2011) Protein recovery and identification from the gulf killifish, Fundulus grandis: comparing snap-frozen and RNAlaters® preserved tissues. Proteomics 11:4257–4261. https://doi.org/10.1002/pmic.201100328

    Article  PubMed  Google Scholar 

  14. Han NY, Choi W, Park JM et al (2013) Label-free quantification for discovering novel biomarkers in the diagnosis and assessment of disease activity in inflammatory bowel disease. J Dig Dis 14:166–174. https://doi.org/10.1111/1751-2980.12035

    Article  PubMed  Google Scholar 

  15. Shevchenko A, Tomas H, Havli J et al (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856

    Article  PubMed  Google Scholar 

  16. Thakur D, Rejtar T, Wang D et al (2011) Microproteomic analysis of 10,000 laser captured microdissected breast tumor cells using short-range sodium dodecyl sulfate-polyacrylamide gel electrophoresis and porous layer open tubular liquid chromatography tandem mass spectrometry. J Chromatogr A 1218:8168–8174

    Article  PubMed  PubMed Central  Google Scholar 

  17. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198

    Article  PubMed  Google Scholar 

  18. elnour A (2017) Type of stains used in detection of protein in gel. MOJ Proteom Bioinform 5:10–12. https://doi.org/10.15406/mojpb.2017.05.00163

    Article  Google Scholar 

  19. Chevallet M, Luche S, Rabilloud T (2006) Silver staining of proteins in polyacrylamide gels. Nat Protoc 1:1852–1858. https://doi.org/10.1038/nprot.2006.288

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chevalier F (2010) Standard dyes for total protein staining in gel-based proteomic analysis. Materials 3:4784–4792. https://doi.org/10.3390/ma3104784

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mortz E, Krogh TN, Vorum H, Görg A (2001) Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteom Int Ed 1:1359–1363

    Article  Google Scholar 

  22. Fic E, Kedracka-Krok S, Jankowska U et al (2010) Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis 31:3573–3579. https://doi.org/10.1002/elps.201000197

    Article  PubMed  Google Scholar 

  23. Zellner M, Winkler W, Hayden H et al (2005) Quantitative validation of different protein precipitation methods in proteome analysis of blood platelets. Electrophoresis 26:2481–2489

    Article  PubMed  Google Scholar 

  24. Roy VK, Senthil Kumar N, Gurusubramanian G (2012) Proteins–structure, properties and their separation by SDS-polyacrylamide gel electrophoresis. Sci Vis 12:170–181

    Google Scholar 

  25. Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42

    Article  Google Scholar 

  26. Sabullah K (2014) Comparision of staining methodsfor two dimensional electrophoresis gel resolved with Puntius javanicus liver proteome. J Biochem Microbiol Biotechnol 2(27):31

    Google Scholar 

  27. Kang D-H, Gho Y-S, Suh M-K, Kang C-H (2002) Highly sensitive and fast protein detection with coomassie brilliant blue in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Bull Korean Chem Soc 23:1511–1512

    Article  Google Scholar 

  28. Subedi P, Schneider M, Philipp J et al (2019) Comparison of methods to isolate proteins from extracellular vesicles for mass spectrometry-based proteomic analyses. Anal Biochem 584:113390

    Article  PubMed  Google Scholar 

  29. Zhang Y, Bottinelli D, Lisacek F et al (2015) Optimization of human dendritic cell sample preparation for mass spectrometry-based proteomic studies. Anal Biochem 484:40–50. https://doi.org/10.1016/j.ab.2015.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rajeev SK, Reddy KVR (2004) Sperm membrane protein profiles of fertile and infertile men: identification and characterization of fertility-associated sperm antigen. Hum Reprod 19:234–242

    Article  PubMed  Google Scholar 

  31. Danilevich VN, Petrovskaya LE, Grishin EV (2008) A highly efficient procedure for the extraction of soluble proteins from bacterial cells with mild chaotropic solutions. Chem Eng Technol 31:904–910. https://doi.org/10.1002/ceat.200800024

    Article  Google Scholar 

  32. Bennike TB, Carlsen TG, Ellingsen T et al (2015) Neutrophil extracellular traps in ulcerative colitis: a proteome analysis of intestinal biopsies. Inflamm Bowel Dis 21:2052–2067

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rao PK, Li Q (2009) Principal component analysis of proteome dynamics in iron-starved mycobacterium tuberculosis. J Proteom Bioinform 2:19

    Article  Google Scholar 

  34. Zhu Y, Mullen A, Rai D et al (2019) Assessment of RNAlater® as a potential method to preserve bovine muscle proteins compared with dry ice in a proteomic study. Foods 8:60. https://doi.org/10.3390/foods8020060

    Article  PubMed Central  Google Scholar 

  35. van Eijsden RGE, Stassen C, Daenen L et al (2013) A universal fixation method based on quaternary ammonium salts (RNAlater) for omics-technologies: Saccharomyces cerevisiae as a case study. Biotechnol Lett 35:891–900. https://doi.org/10.1007/s10529-013-1163-0

    Article  PubMed  Google Scholar 

  36. Barclay D, Zamora R, Torres A et al (2008) A simple, rapid, and convenient luminexTM-compatible method of tissue isolation. J Clin Lab Anal 22:278–281. https://doi.org/10.1002/jcla.20253

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research work was funded by DST-SERB, Government of India; Project Number DST_SERB_ECR/2017/000761.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Alyethodi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Research has been approved by the Institute Animal Ethics Committee (IAEC) of the ICAR-Central Institute for Research on Cattle, Meerut, UP, India under CPCSEA guidelines. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alyethodi, R.R., Karthik, S., Muniswamy, K. et al. Assessment of Protein Profiles of RNAlater Stored and Fresh PBMC Cells Using Different Protein Extraction Buffers. Protein J 39, 291–300 (2020). https://doi.org/10.1007/s10930-020-09888-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09888-y

Keywords:

Navigation