1932

Abstract

Swine disease models are essential for mimicry of human metabolic and vascular pathophysiology, thereby enabling high-fidelity translation to human medicine. The worldwide epidemic of obesity, metabolic disease, and diabetes has prompted the focus on these diseases in this review. We highlight the remarkable similarity between Ossabaw miniature swine and humans with metabolic syndrome and atherosclerosis. Although the evidence is strongest for swine models of coronary artery disease, findings are generally applicable to any vascular bed. We discuss the major strengths and weaknesses of swine models. The development of vascular imaging is an example of optimal vascular engineering in swine. Although challenges regarding infrastructure and training of engineers in the use of swine models exist, opportunities are ripe for gene editing, studies of molecular mechanisms, and use of swine in coronary artery imaging and testing of devices that can move quickly to human clinical studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-082919-053009
2020-06-04
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/22/1/annurev-bioeng-082919-053009.html?itemId=/content/journals/10.1146/annurev-bioeng-082919-053009&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S et al. 2018. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 14:140–62
    [Google Scholar]
  2. 2. 
    Wong ND, Sciammarella MG, Polk D, Gallagher A, Miranda-Peats L et al. 2003. The metabolic syndrome, diabetes, and subclinical atherosclerosis assessed by coronary calcium. J. Am. Coll. Cardiol. 41:1547–53
    [Google Scholar]
  3. 3. 
    Kim U, Leipsic JA, Sellers SL, Shao M, Blanke P et al. 2018. Natural history of diabetic coronary atherosclerosis by quantitative measurement of serial coronary computed tomographic angiography: results of the PARADIGM study. JACC Cardiovasc. Imaging 11:1461–71
    [Google Scholar]
  4. 4. 
    Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR et al. 2018. Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation 137:e67–492
    [Google Scholar]
  5. 5. 
    Roberts RM, Smith GW, Bazer FW, Cibelli J, Seidel GE Jr et al. 2009. Research priorities: farm animal research in crisis. Science 324:468–69
    [Google Scholar]
  6. 6. 
    Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV et al. 2013. Genomic responses in mouse models poorly mimic human inflammatory diseases. PNAS 110:3507–12
    [Google Scholar]
  7. 7. 
    Horton JD, Cohen JC, Hobbs HH 2009. PCSK9: a convertase that coordinates LDL catabolism. J. Lipid Res. 50:Suppl.S172–77
    [Google Scholar]
  8. 8. 
    Arner P. 2005. Resistin: Yet another adipokine tells us that men are not mice. Diabetologia 48:2203–5
    [Google Scholar]
  9. 9. 
    Hsueh W, Abel ED, Breslow JL, Maeda N, Davis RC et al. 2007. Recipes for creating animal models of diabetic cardiovascular disease. Circ. Res. 100:1415–27
    [Google Scholar]
  10. 10. 
    Atkinson MA. 2011. Evaluating preclinical efficacy. Sci. Transl. Med. 3:96cm22
    [Google Scholar]
  11. 11. 
    Johnson GJ, Griggs TR, Badimon L 1999. The utility of animal models in the preclinical study of interventions to prevent human coronary artery restenosis: analysis and recommendations. Thromb. Haemost. 81:835–43
    [Google Scholar]
  12. 12. 
    van Beusekom HMM, Ferrero V, Ribichini F, van der Giessen WJ 2009. Quinaprilat-eluting stents do not attenuate intimal thickening following stenting in porcine coronary arteries. Atherosclerosis 205:120–25
    [Google Scholar]
  13. 13. 
    Ribichini F, Ferrero V, Rognoni A, Vacca G, Vassanelli C 2005. Angiotensin antagonism in coronary artery disease: results after coronary revascularisation. Drugs 65:1073–96
    [Google Scholar]
  14. 14. 
    Ramlo-Halsted BA, Edelman SV. 1999. The natural history of type 2 diabetes. Implications for clinical practice. Prim. Care 26:771–89
    [Google Scholar]
  15. 15. 
    Am. Diabetes Assoc 2008. Diagnosis and classification of diabetes mellitus. Diabetes Care 31S55–60
  16. 16. 
    Marx J. 2002. Unraveling the causes of diabetes. Science 296:686–89
    [Google Scholar]
  17. 17. 
    Neel JV. 1962. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”?. Am. J. Hum. Genet. 14:353–62
    [Google Scholar]
  18. 18. 
    Steinberger J, Daniels SR. 2003. Obesity, insulin resistance, diabetes, and cardiovascular risk in children: an American Heart Association scientific statement from the Atherosclerosis, Hypertension, and Obesity in the Young Committee (Council on Cardiovascular Disease in the Young) and the Diabetes Committee (Council on Nutrition, Physical Activity, and Metabolism). Circulation 107:1448–53
    [Google Scholar]
  19. 19. 
    Roberts CK, Hevener AL, Barnard RJ 2013. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr. Physiol. 3:1–58
    [Google Scholar]
  20. 20. 
    Kregel KC, Allen DL, Booth FW, Fleshner MR, Henriksen EJ et al. 2006. Resource Book for the Design of Animal Exercise Protocols Bethesda, MD: Am. Physiol. Soc.
  21. 21. 
    Phillips RW, Panepinto LM, Will DH 1979. Genetic selection for diabetogenic traits in Yucatan miniature swine. Diabetes 28:1102–7
    [Google Scholar]
  22. 22. 
    Dixon JL, Stoops JD, Parker JL, Laughlin MH, Weisman GA, Sturek M 1999. Dyslipidemia and vascular dysfunction in diabetic pigs fed an atherogenic diet. Arterioscler. Thromb. Vasc. Biol. 19:2981–92
    [Google Scholar]
  23. 23. 
    Dixon JL, Shen S, Vuchetich JP, Wysocka E, Sun GY, Sturek M 2002. Increased atherosclerosis in diabetic dyslipidemic swine: Protection by atorvastatin involves decreased VLDL triglycerides but minimal effects on the lipoprotein profile. J. Lipid Res. 43:1618–29
    [Google Scholar]
  24. 24. 
    Mahley RW, Weisgraber KH, Innerarity T, Brewer HB Jr, Assmann G 1975. Swine lipoproteins and atherosclerosis: changes in the plasma lipoproteins and apoproteins induced by cholesterol feeding. Biochemistry 14:2817–23
    [Google Scholar]
  25. 25. 
    Cohn JS, Rodriguez C, Jacques H, Tremblay M, Davignon J 2004. Storage of human plasma samples leads to alterations in the lipoprotein distribution of apoC-III and apoE. J. Lipid Res. 45:1572–79
    [Google Scholar]
  26. 26. 
    Reitman JS, Mahley RW. 1979. Changes induced in the lipoproteins of Yucatan miniature swine by cholesterol feeding. Biochim. Biophys. Acta Lipids Lipid Metab. 575:446–57
    [Google Scholar]
  27. 27. 
    Weng S, Zemany L, Standley KN, Novack DV, La Regina M et al. 2003. β3 integrin deficiency promotes atherosclerosis and pulmonary inflammation in high-fat-fed, hyperlipidemic mice. PNAS 100:6730–35
    [Google Scholar]
  28. 28. 
    Mahley RW, Weisgraber KH, Innerarity T 1974. Canine lipoproteins and atherosclerosis: II. Characterization of the plasma lipoproteins associated with atherogenic and nonatherogenic hyperlipidemia. Circ. Res. 35:722–33
    [Google Scholar]
  29. 29. 
    Karasik A, Hattori M. 1994. Use of animal models in the study of diabetes. Joslin's Diabetes Mellitus CR Kahn, GC Weir 317–50 Philadelphia: Lea & Febiger
    [Google Scholar]
  30. 30. 
    Sturek M, Tune JD, Alloosh M 2015. Ossabaw Island miniature swine: metabolic syndrome and cardiovascular assessment. Swine in the Laboratory: Surgery, Anesthesia, Imaging, and Experimental Techniques MM Swindle 451–65 Boca Raton, FL: CRC
    [Google Scholar]
  31. 31. 
    Sanders M, White FC, Peterson TM, Bloor CM 1978. Effects of endurance exercise on coronary collateral blood flow in miniature swine. Am. J. Physiol. Heart Circ. Physiol. 234:H614–19
    [Google Scholar]
  32. 32. 
    Armstrong RB, Delp MD, Goljan EF, Laughlin MH 1987. Distribution of blood flow in muscles of miniature swine during exercise. J. Appl. Physiol. 62:1285–98
    [Google Scholar]
  33. 33. 
    White FC, Bloor CM, McKirnan MD, Carroll SM 1998. Exercise training in swine promotes growth of arteriolar bed and capillary angiogenesis in heart. J. Appl. Physiol. 85:1160–68
    [Google Scholar]
  34. 34. 
    Witczak CA, Sturek M. 2004. Exercise prevents diabetes-induced impairment in superficial buffer barrier in porcine coronary smooth muscle. J. Appl. Physiol. 96:1069–79
    [Google Scholar]
  35. 35. 
    Boullion RD, Mokelke EA, Wamhoff BR, Otis CR, Wenzel J et al. 2003. Porcine model of diabetic dyslipidemia: insulin and feed algorithms for mimicking diabetes in humans. Comp. Med. 53:42–52
    [Google Scholar]
  36. 36. 
    Edwards JM, Neeb ZP, Alloosh MA, Long X, Bratz IN et al. 2010. Exercise training decreases store-operated Ca2+ entry associated with metabolic syndrome and coronary atherosclerosis. Cardiovasc. Res. 85:631–40
    [Google Scholar]
  37. 37. 
    Tune JD, Gorman MW, Feigl EO 2004. Matching coronary blood flow to myocardial oxygen consumption. J. Appl. Physiol. 97:404–15
    [Google Scholar]
  38. 38. 
    Merkus D, Sorop O, Houweling B, Hoogteijling BA, Duncker DJ 2006. KCa+ channels contribute to exercise-induced coronary vasodilation in swine. Am. J. Physiol. Heart Circ. Physiol. 291:H2090–97
    [Google Scholar]
  39. 39. 
    White FC, Bloor CM. 1981. Coronary collateral circulation in the pig: correlation of collateral flow with coronary bed size. Basic Res. Cardiol. 76:189–96
    [Google Scholar]
  40. 40. 
    Crick SJ, Sheppard MN, Ho SY, Gebstein L, Anderson RH 1998. Anatomy of the pig heart: comparisons with normal human cardiac structure. J. Anat. 193:105–19
    [Google Scholar]
  41. 41. 
    Feletou M, Teisseire B. 1992. Vascular pharmacology of the micropig: importance of the endothelium. Swine as Models in Biomedical Research MM Swindle, DC Moody, LD Phillips 74–95 Ames: Ia. State Univ. Press
    [Google Scholar]
  42. 42. 
    White FC, Bloor CM. 1986. The pig as a model for myocardial ischemia. Swine in Biomedical Research ME Tumbleson 481–90 New York: Plenum
    [Google Scholar]
  43. 43. 
    Mokelke EA, Hu Q, Song M, Toro L, Reddy HK, Sturek M 2003. Altered functional coupling of coronary K+ channels in diabetic dyslipidemic pigs is prevented by exercise. J. Appl. Physiol. 95:1179–93
    [Google Scholar]
  44. 44. 
    Gerrity RG, Natarajan R, Nadler JL, Kimsey T 2001. Diabetes-induced accelerated atherosclerosis in swine. Diabetes 50:1654–65
    [Google Scholar]
  45. 45. 
    Jacobsson L. 1989. Comparison of experimental hypercholesterolemia and atherosclerosis in male and female mini-pigs of the Gottingen strain. Artery 16:105–17
    [Google Scholar]
  46. 46. 
    Holvoet P, Davey PC, De Keyzer D, Doukoure M, Deridder E et al. 2006. Oxidized low-density lipoprotein correlates positively with Toll-like receptor 2 and interferon regulatory factor-1 and inversely with superoxide dismutase-1 expression: studies in hypercholesterolemic swine and THP-1 cells. Arterioscler. Thromb. Vasc. Biol. 26:1558–65
    [Google Scholar]
  47. 47. 
    Ludvigsen TP, Kirk RK, Christoffersen BO, Pedersen HD, Martinussen T et al. 2015. Göttingen minipig model of diet-induced atherosclerosis: influence of mild streptozotocin-induced diabetes on lesion severity and markers of inflammation evaluated in obese, obese and diabetic, and lean control animals. J. Transl. Med. 13:312
    [Google Scholar]
  48. 48. 
    Renner S, Blutke A, Dobenecker B, Dhom G, Müller TD et al. 2018. Metabolic syndrome and extensive adipose tissue inflammation in morbidly obese Göttingen minipigs. Mol. Metab. 16:180–90
    [Google Scholar]
  49. 49. 
    Ludvigsen TP, Pedersen SF, Vegge A, Ripa RS, Johannesen HH et al. 2019. 18F-FDG PET/MR-imaging in a Göttingen minipig model of atherosclerosis: correlations with histology and quantitative gene expression. Atherosclerosis 285:55–63
    [Google Scholar]
  50. 50. 
    Yuan F, Guo L, Park KH, Woollard JR, Taek-Geun K et al. 2018. Ossabaw pigs with a PCSK9 gain-of-function mutation develop accelerated coronary atherosclerotic lesions: a novel model for preclinical studies. J. Am. Heart Assoc. 7:e006207
    [Google Scholar]
  51. 51. 
    Al-Mashhadi RH, Sørensen CB, Kragh PM, Christoffersen C, Mortensen MB et al. 2013. Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci. Transl. Med. 5:166ra1
    [Google Scholar]
  52. 52. 
    Verhamme P, Quarck R, Hao H, Knaapaen M, Dymarkowski S et al. 2002. Dietary cholesterol withdrawal reduces vascular inflammation and induces coronary plaque stabilization in miniature pigs. Cardiovasc. Res. 56:135–44
    [Google Scholar]
  53. 53. 
    Shim J, Al-Mashhadi RH, Sørensen CB, Bentzon JF 2016. Large animal models of atherosclerosis—new tools for persistent problems in cardiovascular medicine. J. Pathol. 238:257–66
    [Google Scholar]
  54. 54. 
    Raber L, Taniwaki M, Zaugg S, Kelbaek H, Roffi M et al. 2015. Effect of high-intensity statin therapy on atherosclerosis in non-infarct-related coronary arteries (IBIS-4): a serial intravascular ultrasonography study. Eur. Heart J. 36:490–500
    [Google Scholar]
  55. 55. 
    Lerman LO, Chade AR. 2006. Atherosclerotic process, renovascular disease and outcomes from bench to bedside. Curr. Opin. Nephrol. Hypertens. 15:583–87
    [Google Scholar]
  56. 56. 
    Handa RK, Liu Z, Connors BA, Alloosh M, Basile DP et al. 2015. Effect of renal shock wave lithotripsy on the development of metabolic syndrome in a juvenile swine model: a pilot study. J. Urol. 193:1409–16
    [Google Scholar]
  57. 57. 
    Wang E, Meier DJ, Sandoval RM, Von Hendy-Willson VE, Presler BM et al. 2012. A portable fiberoptic ratiometric fluorescence analyzer provides rapid point-of-care determination of glomerular filtration rate in large animals. Kidney Int 81:112–17
    [Google Scholar]
  58. 58. 
    Rizk DV, Meier D, Sandoval RM, Chacana T, Reilly ES et al. 2018. A novel method for rapid bedside measurement of GFR. J. Am. Soc. Nephrol. 29:1609–13
    [Google Scholar]
  59. 59. 
    Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y et al. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:393–98
    [Google Scholar]
  60. 60. 
    Perleberg C, Kind A, Schnieke A 2018. Genetically engineered pigs as models for human disease. Dis. Model. Mech. 11:dmm030783
    [Google Scholar]
  61. 61. 
    Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C et al. 2012. Efficient TALEN-mediated gene knockout in livestock. PNAS 109:17382–87
    [Google Scholar]
  62. 62. 
    Hedayat AF, Park KH, Kwon TG, Woollard JR, Jiang K et al. 2017. Peripheral vascular atherosclerosis in a novel PCSK9 gain-of-function mutant Ossabaw miniature pig model. Transl. Res. 192:30–45
    [Google Scholar]
  63. 63. 
    Lee L, Alloosh M, Saxena R, Van Alstine W, Watkins BA et al. 2009. Nutritional model of steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Hepatology 50:56–67
    [Google Scholar]
  64. 64. 
    Otis CR, Wamhoff BR, Sturek M 2003. Hyperglycemia-induced insulin resistance in diabetic dyslipidemic Yucatan swine. Comp. Med. 53:53–64
    [Google Scholar]
  65. 65. 
    Lee J, Xu Y, Lu L, Bergman B, Leitner JW et al. 2010. Multiple abnormalities of myocardial insulin signaling in a porcine model of diet-induced obesity. Am. J. Physiol. Heart Circ. Physiol. 298:H310–19
    [Google Scholar]
  66. 66. 
    Newell-Fugate AE, Taibl JN, Clark SG, Alloosh M, Sturek M, Krisher RL 2014. Effects of diet-induced obesity on metabolic parameters and reproductive function in female Ossabaw minipigs. Comp. Med. 64:44–49
    [Google Scholar]
  67. 67. 
    Dyson MC, Alloosh M, Vuchetich JP, Mokelke EA, Sturek M 2006. Components of metabolic syndrome and coronary artery disease in female Ossabaw swine fed excess atherogenic diet. Comp. Med. 56:35–45
    [Google Scholar]
  68. 68. 
    Payne GA, Borbouse L, Kumar S, Neeb Z, Alloosh M et al. 2010. Epicardial perivascular adipose-derived leptin exacerbates coronary endothelial dysfunction in metabolic syndrome via a protein kinase C-β pathway. Arterioscler. Thromb. Vasc. Biol. 30:1711–17
    [Google Scholar]
  69. 69. 
    Bratz IN, Dick GM, Tune JD, Edwards JM, Neeb ZP et al. 2008. Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome. Am. J. Physiol. Heart Circ. Physiol. 294:H2489–96
    [Google Scholar]
  70. 70. 
    Kreutz RP, Alloosh M, Mansour K, Neeb Z, Kreutz Y et al. 2011. Morbid obesity and metabolic syndrome in Ossabaw miniature swine are associated with increased platelet reactivity. Diabetes Metab. Syndr. Obes. 4:99–105
    [Google Scholar]
  71. 71. 
    Lassaletta AD, Chu LM, Robich MP, Elmadhun NY, Feng J et al. 2012. Overfed Ossabaw swine with early stage metabolic syndrome have normal coronary collateral development in response to chronic ischemia. Basic Res. Cardiol. 107:243
    [Google Scholar]
  72. 72. 
    McKenney ML, Schultz KA, Boyd JH, Byrd JP, Alloosh M et al. 2014. Epicardial adipose excision slows the progression of porcine coronary atherosclerosis. J. Cardiothorac. Surg. 9:2–12
    [Google Scholar]
  73. 73. 
    Moberly S, Mather K, Berwick Z, Owen M, Goodwill A et al. 2013. Impaired cardiometabolic responses to glucagon-like peptide 1 in obesity and type 2 diabetes mellitus. Basic Res. Cardiol. 108:365
    [Google Scholar]
  74. 74. 
    Larsen MO, Rolin B, Wilken M, Carr RD, Svendsen O 2002. High-fat high-energy feeding impairs fasting glucose and increases fasting insulin levels in the Göttingen minipig: results from a pilot study. Ann. N. Y. Acad. Sci. 967:414–23
    [Google Scholar]
  75. 75. 
    Johansen T, Hansen HS, Richelsen B, Malmlöf R 2001. The obese Göttingen minipig as a model of the metabolic syndrome: dietary effects on obesity, insulin sensitivity, and growth hormone profile. Comp. Med. 51:150–55
    [Google Scholar]
  76. 76. 
    Schumacher-Petersen C, Christoffersen BO, Kirk RK, Ludvigsen TP, Zois NE et al. 2019. Experimental non-alcoholic steatohepatitis in Göttingen minipigs: consequences of high fat-fructose-cholesterol diet and diabetes. J. Transl. Med. 17:110
    [Google Scholar]
  77. 77. 
    Badin JK, Kole A, Stivers B, Progar V, Pareddy A et al. 2018. Diabetes exacerbates coronary atherosclerosis and calcification in Ossabaw miniature swine with metabolic syndrome. J. Transl. Med. 16:58
    [Google Scholar]
  78. 78. 
    Badin JK, Progar V, Pareddy A, Cagle J, Alloosh M, Sturek M 2019. Effect of age on diabetogenicity of alloxan in Ossabaw miniature swine. Comp. Med. 69:114–22
    [Google Scholar]
  79. 79. 
    Clements RT, Sodha NR, Feng J, Boodhwani M, Liu Y et al. 2009. Impaired coronary microvascular dilation correlates with enhanced vascular smooth muscle MLC phosphorylation in diabetes. Microcirculation 16:193–206
    [Google Scholar]
  80. 80. 
    Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ et al. 2001. A transgenic model of visceral obesity and the metabolic syndrome. Science 294:2166–70
    [Google Scholar]
  81. 81. 
    Stricker-Krongrad A, Shoemake CR, Bouchard GF 2016. The miniature swine as a model in experimental and translational medicine. Toxicol. Pathol. 44:612–23
    [Google Scholar]
  82. 82. 
    Neeb ZP, Edwards JM, Alloosh M, Long X, Mokelke EA, Sturek M 2010. Metabolic syndrome and coronary artery disease in Ossabaw compared with Yucatan swine. Comp. Med. 60:300–15
    [Google Scholar]
  83. 83. 
    Christoffersen BO, Grand N, Golozoubova V, Svendsen O, Raun K 2007. Gender-associated differences in metabolic syndrome–related parameters in Göttingen minipigs. Comp. Med. 57:493–504
    [Google Scholar]
  84. 84. 
    Larsen MO, Rolin B, Raun K, Bjerre Knudsen L, Gotfredsen CF, Bock T 2007. Evaluation of β-cell mass and function in the Göttingen minipig. Diabetes Obes. Metab. 9:Suppl. 2170–79
    [Google Scholar]
  85. 85. 
    Yang SL, Xia JH, Zhang YY, Fan JG, Wang H et al. 2015. Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs. Sci. Rep. 5:13980
    [Google Scholar]
  86. 86. 
    Bellinger DA, Merricks EP, Nichols TC 2006. Swine models of type 2 diabetes mellitus: insulin resistance, glucose tolerance, and cardiovascular complications. ILAR J 47:243–58
    [Google Scholar]
  87. 87. 
    Witczak CA, Mokelke EA, Boullion RD, Wenzel J, Keisler DH, Sturek M 2005. Noninvasive measures of body fat percentage in male Yucatan swine. Comp. Med. 55:445–51
    [Google Scholar]
  88. 88. 
    Curtasu MV, Knudsen KEB, Callesen H, Purup S, Stagsted J, Hedemann MS 2019. Obesity development in a miniature Yucatan pig model: a multi-compartmental metabolomics study on cloned and normal pigs fed restricted or ad libitum high-energy diets. J. Proteome Res. 18:30–47
    [Google Scholar]
  89. 89. 
    Talbott CW, See MT, Kaminsky P, Bixby D, Sturek M et al. 2006. Enhancing pork flavor and fat quality with swine raised in sylvan systems: potential niche-market application for the Ossabaw hog. Renew. Agric. Food Syst. 21:183–91
    [Google Scholar]
  90. 90. 
    Bender SB, Tune JD, Borbouse L, Long X, Sturek M, Laughlin MH 2009. Altered mechanism of adenosine-induced coronary arteriolar dilation in early-stage metabolic syndrome. Exp. Biol. Med. 234:683–92
    [Google Scholar]
  91. 91. 
    Elmadhun NY, Sabe AA, Lassaletta AD, Chu LM, Kondra K et al. 2014. Metabolic syndrome impairs notch signaling and promotes apoptosis in chronically ischemic myocardium. J. Thorac. Cardiovasc. Surg. 148:1048–55
    [Google Scholar]
  92. 92. 
    Sham JG, Simianu VV, Wright AS, Stewart SD, Alloosh M et al. 2014. Evaluating the mechanisms of improved glucose homeostasis after bariatric surgery in Ossabaw miniature swine. J. Diabetes Res. 2014:526972
    [Google Scholar]
  93. 93. 
    Faris RJ, Boddicker RL, Walker-Daniels J, Li J, Jones DE, Spurlock ME 2012. Inflammation in response to n3 fatty acids in a porcine obesity model. Comp. Med. 62:495–503
    [Google Scholar]
  94. 94. 
    Matthan NR, Solano-Aguilar G, Meng H, Lamon-Fava S, Goldbaum A et al. 2018. The Ossabaw pig is a suitable translational model to evaluate dietary patterns and coronary artery disease risk. J. Nutr. 148:542–51
    [Google Scholar]
  95. 95. 
    Li ZL, Woollard JR, Wang SM, Korsmo MJ, Ebrahimi B et al. 2011. Increased glomerular filtration rate in early metabolic syndrome is associated with renal adiposity and microvascular proliferation. Am. J. Physiol. Renal Physiol. 301:F1078–87
    [Google Scholar]
  96. 96. 
    Padilla J, Jenkins NT, Lee S, Zhang H, Cui J et al. 2013. Vascular transcriptional alterations produced by juvenile obesity in Ossabaw swine. Physiol. Genom. 45:434–46
    [Google Scholar]
  97. 97. 
    Berwick Z, Dick G, O'Leary H, Bender S, Goodwill A et al. 2013. Contribution of electromechanical coupling between KV and CaV1.2 channels to coronary dysfunction in obesity. Basic Res. Cardiol. 108:370
    [Google Scholar]
  98. 98. 
    Lu H, Yan H, Ward MG, Stewart T, Adeola O, Ajuwon KM 2018. Effect on Rendement Napole genotype on metabolic markers in Ossabaw pigs fed different levels of fat. J. Anim. Physiol. Anim. Nutr. 102:e132–38
    [Google Scholar]
  99. 99. 
    Lee DL, Wamhoff BR, Katwa LC, Reddy HK, Voelker DJ et al. 2003. Increased endothelin-induced Ca2+ signaling, tyrosine phosphorylation, and coronary artery disease in diabetic dyslipidemic swine are prevented by atorvastatin. J. Pharmacol. Exp. Ther. 306:132–40
    [Google Scholar]
  100. 100. 
    Rector RS, Thomas TR, Liu Y, Henderson KK, Holiman DA et al. 2004. Effect of exercise on postprandial lipemia following a higher calorie meal in Yucatan miniature swine. Metabolism 53:1021–26
    [Google Scholar]
  101. 101. 
    Long X, Bratz IN, Alloosh M, Edwards JM, Sturek M 2010. Short-term exercise training prevents micro- and macrovascular disease following coronary stenting. J. Appl. Physiol. 108:1766–74
    [Google Scholar]
  102. 102. 
    Walker ME, Matthan NR, Solano-Aguilar G, Jang S, Lakshman S et al. 2019. A Western-type dietary pattern and atorvastatin induce epicardial adipose tissue interferon signaling in the Ossabaw pig. J. Nutr. Biochem. 67:212–18
    [Google Scholar]
  103. 103. 
    Berwick ZC, Dick GM, Moberly SP, Kohr MC, Sturek M, Tune JD 2012. Contribution of voltage-dependent K+ channels to metabolic control of coronary blood flow. J. Mol. Cell Cardiol. 52:912–19
    [Google Scholar]
  104. 104. 
    Trask AJ, Katz PS, Kelly AP, Galantowicz ML, Cismowski MJ et al. 2012. Dynamic micro- and macrovascular remodeling in coronary circulation of obese Ossabaw pigs with metabolic syndrome. J. Appl. Physiol. 113:1128–40
    [Google Scholar]
  105. 105. 
    Zhang X, Li ZL, Woollard JR, Eirin A, Ebrahimi B et al. 2013. Obesity-metabolic derangement preserves hemodynamics but promotes intrarenal adiposity and macrophage infiltration in swine renovascular disease. Am. J. Physiol. Renal Physiol. 305:F265–76
    [Google Scholar]
  106. 106. 
    Vieira-Potter VJ, Lee S, Bayless DS, Scroggins RJ, Welly RJ et al. 2015. Disconnect between adipose tissue inflammation and cardiometabolic dysfunction in Ossabaw pigs. Obesity 23:2421–29
    [Google Scholar]
  107. 107. 
    Mahfoud F, Moon LB, Pipenhagen CA, Jensen JA, Pathak A et al. 2016. Catheter-based radio-frequency renal nerve denervation lowers blood pressure in obese hypertensive swine model. J. Hypertens. 34:1854–62
    [Google Scholar]
  108. 108. 
    Borbouse L, Dick GM, Payne GA, Payne BD, Svendsen MC et al. 2010. Contribution of BKCa channels to local metabolic coronary vasodilation: effects of metabolic syndrome. Am. J. Physiol. Heart Circ. Physiol. 298:H966–73
    [Google Scholar]
  109. 109. 
    Owen MK, Witzmann FA, McKenney ML, Lai X, Berwick ZC et al. 2013. Perivascular adipose tissue potentiates contraction of coronary vascular smooth muscle: influence of obesity. Circulation 128:9–18
    [Google Scholar]
  110. 110. 
    Choy JS, Luo T, Huo Y, Wischgoll T, Schultz K et al. 2015. Compensatory enlargement of Ossabaw miniature swine coronary arteries in diffuse atherosclerosis. IJC Heart Vasc 6:4–11
    [Google Scholar]
  111. 111. 
    McKenney-Drake ML, Territo PR, Salavati A, Houshmand S, Persohn S et al. 2016. 18F-NaF PET imaging of early coronary artery calcification. JACC Cardiovasc. Imaging 9:627–28
    [Google Scholar]
  112. 112. 
    McKenney-Drake ML, Moghbel MC, Paydary K, Alloosh M, Houshmand S et al. 2018. 18F-NaF and 18F-FDG as molecular probes in the evaluation of atherosclerosis. Eur. J. Nucl. Med. Mol. Imaging 45:2190–200
    [Google Scholar]
  113. 113. 
    McKenney-Drake ML, Rodenbeck SD, Bruning RS, Kole A, Yancey KW et al. 2017. Epicardial adipose tissue removal potentiates outward remodeling and arrests coronary atherogenesis. Ann. Thorac. Surg. 103:1622–30
    [Google Scholar]
  114. 114. 
    Badin JK, Bruning RS, Sturek M 2018. Effect of metabolic syndrome and aging on Ca2+ dysfunction in coronary smooth muscle and coronary artery disease severity in Ossabaw miniature swine. Exp. Gerontol. 108:247–55
    [Google Scholar]
  115. 115. 
    Cao Y, Kole A, Hui J, Zhang Y, Mai J et al. 2018. Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography. Sci. Rep. 8:2400
    [Google Scholar]
  116. 116. 
    de Korte CL, Sierevogel MJ, Mastik F, Strijder C, Schaar JA et al. 2002. Identification of atherosclerotic plaque components with intravascular ultrasound elastography in vivo: a Yucatan pig study. Circulation 105:1627–30
    [Google Scholar]
  117. 117. 
    Theilmeier G, Quarck R, Verhamme P, Bochaton-Piallat ML, Lox M et al. 2002. Hypercholesterolemia impairs vascular remodelling after porcine coronary angioplasty. Cardiovasc. Res. 55:385–95
    [Google Scholar]
  118. 118. 
    Wastney M, Lee W, Jackson GS, Alloosh M, Sturek M et al. 2013. Soft tissue calcification in the Ossabaw miniature pig: experimental and kinetic modeling studies. Osteoporos. Int. 24:2123–26
    [Google Scholar]
  119. 119. 
    McKenney-Drake ML, Rodenbeck SD, Owen MK, Schultz KA, Alloosh M et al. 2016. Biphasic alterations in coronary smooth muscle Ca2+ regulation in a repeat cross-sectional study of coronary artery disease severity in metabolic syndrome. Atherosclerosis 249:1–9
    [Google Scholar]
  120. 120. 
    Long X, Mokelke EA, Neeb ZP, Alloosh M, Edwards JM, Sturek M 2010. Adenosine receptor regulation of coronary blood flow in Ossabaw miniature swine. J. Pharmacol. Exp. Ther. 335:781–87
    [Google Scholar]
  121. 121. 
    Sturek M. 2011. Ca2+ regulatory mechanisms of exercise protection against coronary artery disease in metabolic syndrome and diabetes. J. Appl. Physiol. 111:573–86
    [Google Scholar]
  122. 122. 
    Phillips RW, Panepinto LM, Spangler R, Westmoreland N 1982. Yucatan miniature swine as a model for the study of human diabetes-mellitus. Diabetes 31:30–36
    [Google Scholar]
  123. 123. 
    Witczak CA, Wamhoff BR, Sturek M 2006. Exercise training prevents Ca2+ dysregulation in coronary smooth muscle from diabetic dyslipidemic Yucatan swine. J. Appl. Physiol. 101:752–62
    [Google Scholar]
  124. 124. 
    Henze LJ, Griffin BT, Christiansen M, Bundgaard C, Langguth P, Holm R 2018. Exploring gastric emptying rate in minipigs: effect of food type and pre-dosing of metoclopramide. Eur. J. Pharm. Sci. 118:183–90
    [Google Scholar]
  125. 125. 
    Maclean N, Ogilvie RF. 1955. Quantitative estimation of the pancreatic islet tissue in diabetic subjects. Diabetes 4:367–76
    [Google Scholar]
  126. 126. 
    Larsen MO, Rolin B, Sturis J, Wilken M, Carr RD et al. 2006. Measurements of insulin responses as predictive markers of pancreatic β-cell mass in normal and β-cell-reduced lean and obese Göttingen minipigs in vivo. Am. J. Physiol. Endocrinol. Metab. 290:E670–77
    [Google Scholar]
  127. 127. 
    Bayturan O, Tuzcu EM, Lavoie A, Hu T, Wolski K et al. 2010. The metabolic syndrome, its component risk factors, and progression of coronary atherosclerosis. Arch. Intern. Med. 170:478–84
    [Google Scholar]
  128. 128. 
    Nicholls SJ, Hsu A, Wolski K, Hu B, Bayturan O et al. 2010. Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. J. Am. Coll. Cardiol. 55:2399–407
    [Google Scholar]
  129. 129. 
    Al-Mashhadi RH, Bjorklund MM, Mortensen MB, Christoffersen C, Larsen T et al. 2015. Diabetes with poor glycaemic control does not promote atherosclerosis in genetically modified hypercholesterolaemic minipigs. Diabetologia 58:1926–36
    [Google Scholar]
  130. 130. 
    Nicholls SJ, Tuzcu EM, Kalidindi S, Wolski K, Moon KW et al. 2008. Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling: a pooled analysis of 5 intravascular ultrasound trials. J. Am. Coll. Cardiol. 52:255–62
    [Google Scholar]
  131. 131. 
    Touchard AG, Schwartz RS. 2006. Preclinical restenosis models: challenges and successes. Toxicol. Pathol. 34:11–18
    [Google Scholar]
  132. 132. 
    MacAskill MG, Newby DE, Tavares AAS 2019. Frontiers in PET imaging of the vulnerable atherosclerotic plaque. Cardiovasc. Res. 115:1952–62
    [Google Scholar]
  133. 133. 
    Andrews JPM, Fayad ZA, Dweck MR 2018. New methods to image unstable atherosclerotic plaques. Atherosclerosis 272:118–28
    [Google Scholar]
  134. 134. 
    Moss AJ, Doris MK, Andrews JPM, Bing R, Daghem M et al. 2019. Molecular coronary plaque imaging using 18F-fluoride. Circ. Cardiovasc. Imaging 12:e008574
    [Google Scholar]
  135. 135. 
    Salarian M, Sadeghi MM. 2019. Hype or hope: 18F-NaF positron emission tomography for vulnerable coronary plaque imaging. Circ. Cardiovasc. Imaging 12:e009591
    [Google Scholar]
  136. 136. 
    Kwiecinski J, Dey D, Cadet S, Lee SE, Otaki Y et al. 2019. Peri-coronary adipose tissue density is associated with 18F-sodium fluoride coronary uptake in stable patients with high-risk plaques. JACC Cardiovasc. Imaging 12:2000–10
    [Google Scholar]
  137. 137. 
    Li SJ, Liu CH, Chang CW, Chu HP, Chen KJ et al. 2015. Development of a dietary-induced metabolic syndrome model using miniature pigs involvement of AMPK and SIRT1. Eur. J. Clin. Investig. 45:70–80
    [Google Scholar]
  138. 138. 
    Li SJ, Liu CH, Chu HP, Mersmann HJ, Ding ST et al. 2017. The high-fat diet induces myocardial fibrosis in the metabolically healthy obese minipigs—the role of ER stress and oxidative stress. Clin. Nutr. 36:760–67
    [Google Scholar]
  139. 139. 
    Zhang X, Lerman LO. 2016. Investigating the metabolic syndrome: contributions of swine models. Toxicol. Pathol. 44:358–66
    [Google Scholar]
  140. 140. 
    Stribling HL, Brisbin IL Jr, Sweeney JR, Stribling LA 1984. Body fat reserves and their prediction in two populations of feral swine. J. Wildl. Manag 48:635–39
    [Google Scholar]
  141. 141. 
    Stabley JN, Towler DA. 2017. Arterial calcification in diabetes mellitus: preclinical models and translational implications. Arterioscler. Thromb. Vasc. Biol. 37:205–17
    [Google Scholar]
  142. 142. 
    Li Y, Fuchimoto D, Sudo M, Haruta H, Lin QF et al. 2016. Development of human-like advanced coronary plaques in low-density lipoprotein receptor knockout pigs and justification for statin treatment before formation of atherosclerotic plaques. J. Am. Heart Assoc. 5:e002779
    [Google Scholar]
  143. 143. 
    Puri R, Nicholls SJ, Shao M, Kataoka Y, Uno K et al. 2015. Impact of statins on serial coronary calcification during atheroma progression and regression. J. Am. Coll. Cardiol. 65:1273–82
    [Google Scholar]
  144. 144. 
    Irkle A, Vesey AT, Lewis DY, Skepper JN, Bird JL et al. 2015. Identifying active vascular microcalcification by 18F–sodium fluoride positron emission tomography. Nat. Commun. 6:7495
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-082919-053009
Loading
/content/journals/10.1146/annurev-bioeng-082919-053009
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error