Skip to main content
Log in

Anti-CD20 Monoclonal Antibodies for Relapsing and Progressive Multiple Sclerosis

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) was previously thought to be a T-cell-mediated, demyelinating disease of the central nervous system. Disease-modifying therapies targeting T cells have, indeed, shown remarkable efficacy in patients with relapsing-remitting MS. However, these therapies do also target B cells, and a B-cell-depleting monoclonal antibody (ocrelizumab) has recently been approved for MS therapy and is efficacious not only in relapsing forms of MS but also in some patients with primary progressive MS. This suggests that B cells may play a more important role in the pathogenesis of MS than previously appreciated. We review the potential roles of B cells, which are the precursors of antibody-secreting plasma cells in the pathogenesis of MS. Furthermore, we provide an overview of the characteristics and clinical data for the four monoclonal antibodies (ocrelizumab, ofatumumab, rituximab, and ublituximab) that have been approved, are currently been used off-label or are being investigated as treatments for MS. These antibodies all target the cluster of differentiation (CD)-20 molecule and bind to distinct or overlapping epitopes on B cells and a subset of T cells that express CD20. This leads to B-cell depletion and, possibly, to depletion of CD20-positive T cells. The net result is strong suppression of clinical and radiological disease activity as well as slowing of the development of persisting neurological impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple sclerosis: mechanisms and immunotherapy. Neuron. 2018;97(4):742–68.

    Article  CAS  PubMed  Google Scholar 

  2. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–86.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sormani MP, Bruzzi P. MRI lesions as a surrogate for relapses in multiple sclerosis: a meta-analysis of randomised trials. Lancet Neurol. 2013;12(7):669–76.

    Article  PubMed  Google Scholar 

  4. Sorensen PS, Sellebjerg F. Pulsed immune reconstitution therapy in multiple sclerosis. Ther Adv Neurol Disord. 2019;12:1756286419836913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sellebjerg F, Sorensen PS. Therapeutic interference with leukocyte recirculation in multiple sclerosis. Eur J Neurol. 2015;22(3):434–42.

    Article  CAS  PubMed  Google Scholar 

  6. Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple sclerosis. Nat Immunol. 2018;19(7):696–707.

    Article  CAS  PubMed  Google Scholar 

  7. Bar-Or A, Grove RA, Austin DJ, Tolson JM, VanMeter SA, Lewis EW, et al. Subcutaneous ofatumumab in patients with relapsing-remitting multiple sclerosis: the MIRROR study. Neurology. 2018;90(20):e1805–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221–34.

    Article  CAS  PubMed  Google Scholar 

  9. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676–88.

    Article  CAS  PubMed  Google Scholar 

  10. Kappos L, Li D, Calabresi PA, O’Connor P, Bar-Or A, Barkhof F, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet. 2011;378(9805):1779–87.

    Article  CAS  PubMed  Google Scholar 

  11. Sorensen PS, Lisby S, Grove R, Derosier F, Shackelford S, Havrdova E, et al. Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: a phase II study. Neurology. 2014;2014(82):573–81.

    Article  CAS  Google Scholar 

  12. Hawker K, O’Connor P, Freedman MS, Calabresi PA, Antel J, Simon J, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol. 2009;66(4):460–71.

    Article  CAS  PubMed  Google Scholar 

  13. Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376(3):209–20.

    Article  CAS  PubMed  Google Scholar 

  14. Consortium IMSG. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 2019;365(6460).

  15. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73.

    Article  PubMed  Google Scholar 

  16. Stangel M, Fredrikson S, Meinl E, Petzold A, Stuve O, Tumani H. The utility of cerebrospinal fluid analysis in patients with multiple sclerosis. Nat Rev Neurol. 2013;9(5):267–76.

    Article  CAS  PubMed  Google Scholar 

  17. Bankoti J, Apeltsin L, Hauser SL, Allen S, Albertolle ME, Witkowska HE, et al. In multiple sclerosis, oligoclonal bands connect to peripheral B-cell responses. Ann Neurol. 2014;75(2):266–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Walsh MJ, Tourtellotte WW. Temporal invariance and clonal uniformity of brain and cerebrospinal IgG, IgA, and IgM in multiple sclerosis. J Exp Med. 1986;163(1):41–53.

    Article  CAS  PubMed  Google Scholar 

  19. Ritchie AM, Gilden DH, Williamson RA, Burgoon MP, Yu X, Helm K, et al. Comparative analysis of the CD19+ and CD138+ cell antibody repertoires in the cerebrospinal fluid of patients with multiple sclerosis. J Immunol. 2004;173(1):649–56.

    Article  CAS  PubMed  Google Scholar 

  20. von Budingen HC, Kuo TC, Sirota M, van Belle CJ, Apeltsin L, Glanville J, et al. B cell exchange across the blood-brain barrier in multiple sclerosis. J Clin Investig. 2012;122(12):4533–43.

    Article  CAS  Google Scholar 

  21. Stern JN, Yaari G, Vander Heiden JA, Church G, Donahue WF, Hintzen RQ, et al. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci Transl Med. 2014;6(248):248ra107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lassmann H. Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front Immunol. 2018;9:3116.

    Article  CAS  PubMed  Google Scholar 

  23. Sellebjerg F, Jaliashvili I, Christiansen M, Garred P. Intrathecal activation of the complement system and disability in multiple sclerosis. J Neurol Sci. 1998;157(2):168–74.

    Article  CAS  PubMed  Google Scholar 

  24. Scolding NJ, Morgan BP, Houston WA, Linington C, Campbell AK, Compston DA. Vesicular removal by oligodendrocytes of membrane attack complexes formed by activated complement. Nature. 1989;339(6226):620–2.

    Article  CAS  PubMed  Google Scholar 

  25. Keegan M, Konig F, McClelland R, Bruck W, Morales Y, Bitsch A, et al. Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet. 2005;366(9485):579–82.

    Article  PubMed  Google Scholar 

  26. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707–17.

    Article  CAS  PubMed  Google Scholar 

  27. Elliott C, Lindner M, Arthur A, Brennan K, Jarius S, Hussey J, et al. Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis. Brain. 2012;135(Pt 6):1819–33.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Molnarfi N, Schulze-Topphoff U, Weber MS, Patarroyo JC, Prod’homme T, Varrin-Doyer M, et al. MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies. J Exp Med. 2013;210(13):2921–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jelcic I, Al Nimer F, Wang J, Lentsch V, Planas R, Jelcic I, et al. Memory B cells activate brain-homing, autoreactive CD4(+) T cells in multiple sclerosis. Cell. 2018;175(1):85–100e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barr TA, Shen P, Brown S, Lampropoulou V, Roch T, Lawrie S, et al. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J Exp Med. 2012;209(5):1001–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen D, Ireland SJ, Remington G, Alvarez E, Racke MK, Greenberg B, et al. CD40-mediated NF-kappaB activation in B cells is increased in multiple sclerosis and modulated by therapeutics. J Immunol. 2016;197(11):4257–65.

    Article  CAS  PubMed  Google Scholar 

  32. Bar-Or A, Fawaz L, Fan B, Darlington PJ, Rieger A, Ghorayeb C, et al. Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol. 2010;67(4):452–61.

    Article  CAS  PubMed  Google Scholar 

  33. Schneider R, Mohebiany AN, Ifergan I, Beauseigle D, Duquette P, Prat A, et al. B cell-derived IL-15 enhances CD8 T cell cytotoxicity and is increased in multiple sclerosis patients. J Immunol. 2011;187(8):4119–28.

    Article  CAS  PubMed  Google Scholar 

  34. Li R, Rezk A, Miyazaki Y, Hilgenberg E, Touil H, Shen P, et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci Transl Med. 2015;7(310):310ra166.

    Article  CAS  PubMed  Google Scholar 

  35. McWilliam O, Sellebjerg F, Marquart HV, von Essen MR. B cells from patients with multiple sclerosis have a pathogenic phenotype and increased LTalpha and TGFbeta1 response. J Neuroimmunol. 2018;15(324):157–64.

    Article  CAS  Google Scholar 

  36. Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. B cells regulate autoimmunity by provision of IL-10. Nat Immunol. 2002;3(10):944–50.

    Article  CAS  PubMed  Google Scholar 

  37. Shen P, Roch T, Lampropoulou V, O’Connor RA, Stervbo U, Hilgenberg E, et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature. 2014;507(7492):366–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Piancone F, Saresella M, Marventano I, La Rosa F, Zoppis M, Agostini S, et al. B lymphocytes in multiple sclerosis: Bregs and BTLA/CD272 expressing-CD19+ lymphocytes modulate disease severity. Sci Rep. 2016;14(6):29699.

    Article  CAS  Google Scholar 

  39. Duddy M, Niino M, Adatia F, Hebert S, Freedman M, Atkins H, et al. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J Immunol. 2007;178(10):6092–9.

    Article  CAS  PubMed  Google Scholar 

  40. Knippenberg S, Peelen E, Smolders J, Thewissen M, Menheere P, Cohen Tervaert JW, et al. Reduction in IL-10 producing B cells (Breg) in multiple sclerosis is accompanied by a reduced naive/memory Breg ratio during a relapse but not in remission. J Neuroimmunol. 2011;239(1–2):80–6.

    Article  CAS  PubMed  Google Scholar 

  41. Lehmann-Horn K, Schleich E, Hertzenberg D, Hapfelmeier A, Kumpfel T, von Bubnoff N, et al. Anti-CD20 B-cell depletion enhances monocyte reactivity in neuroimmunological disorders. J Neuroinflammation. 2011;26(8):146.

    Article  CAS  Google Scholar 

  42. Machado-Santos J, Saji E, Troscher AR, Paunovic M, Liblau R, Gabriely G, et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain. 2018;141(7):2066–82.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009;132(Pt 5):1175–89.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fischer MT, Wimmer I, Hoftberger R, Gerlach S, Haider L, Zrzavy T, et al. Disease-specific molecular events in cortical multiple sclerosis lesions. Brain. 2013;136(Pt 6):1799–815.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2007;130(Pt 4):1089–104.

    PubMed  Google Scholar 

  46. Magliozzi R, Howell OW, Reeves C, Roncaroli F, Nicholas R, Serafini B, et al. A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol. 2010;68(4):477–93.

    Article  CAS  PubMed  Google Scholar 

  47. Choi SR, Howell OW, Carassiti D, Magliozzi R, Gveric D, Muraro PA, et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain. 2012;135(Pt 10):2925–37.

    Article  PubMed  Google Scholar 

  48. Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004;14(2):164–74.

    Article  PubMed  Google Scholar 

  49. von Essen MR, Ammitzboll C, Hansen RH, Petersen ERS, McWilliam O, Marquart HV, et al. Proinflammatory CD20+ T cells in the pathogenesis of multiple sclerosis. Brain. 2019;142:120–32.

    Article  Google Scholar 

  50. Beers SA, Chan CH, French RR, Cragg MS, Glennie MJ. CD20 as a target for therapeutic type I and II monoclonal antibodies. Semin Hematol. 2010;47(2):107–14.

    Article  CAS  PubMed  Google Scholar 

  51. Cragg MS, Morgan SM, Chan HT, Morgan BP, Filatov AV, Johnson PW, et al. Complement-mediated lysis by anti-CD20 mAb correlates with segregation into lipid rafts. Blood. 2003;101(3):1045–52.

    Article  CAS  PubMed  Google Scholar 

  52. Boross P, Leusen JH. Mechanisms of action of CD20 antibodies. Am J Cancer Res. 2012;2(6):676–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Klein C, Lammens A, Schafer W, Georges G, Schwaiger M, Mossner E, et al. Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MAbs. 2013;5(1):22–33.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sawas A, Farber CM, Schreeder MT, Khalil MY, Mahadevan D, Deng C, et al. A phase 1/2 trial of ublituximab, a novel anti-CD20 monoclonal antibody, in patients with B-cell non-Hodgkin lymphoma or chronic lymphocytic leukaemia previously exposed to rituximab. Br J Haematol. 2017;177(2):243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. de Romeuf C, Dutertre CA, Le Garff-Tavernier M, Fournier N, Gaucher C, Glacet A, et al. Chronic lymphocytic leukaemia cells are efficiently killed by an anti-CD20 monoclonal antibody selected for improved engagement of FcgammaRIIIA/CD16. Br J Haematol. 2008;140(6):635–43.

    Article  CAS  PubMed  Google Scholar 

  56. Monson NL, Cravens PD, Frohman EM, Hawker K, Racke MK. Effect of rituximab on the peripheral blood and cerebrospinal fluid B cells in patients with primary progressive multiple sclerosis. Arch Neurol. 2005;62(2):258–64.

    Article  PubMed  Google Scholar 

  57. Cross AH, Stark JL, Lauber J, Ramsbottom MJ, Lyons JA. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol. 2006;180(1–2):63–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. de Flon P, Soderstrom L, Laurell K, Dring A, Sundstrom P, Gunnarsson M, et al. Immunological profile in cerebrospinal fluid of patients with multiple sclerosis after treatment switch to rituximab and compared with healthy controls. PLoS One. 2018;13(2):e0192516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Piccio L, Naismith RT, Trinkaus K, Klein RS, Parks BJ, Lyons JA, et al. Changes in B- and T-lymphocyte and chemokine levels with rituximab treatment in multiple sclerosis. Arch Neurol. 2010;67(6):707–14.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Maurer MA, Tuller F, Gredler V, Berger T, Lutterotti A, Lunemann JD, et al. Rituximab induces clonal expansion of IgG memory B-cells in patients with inflammatory central nervous system demyelination. J Neuroimmunol. 2016;15(290):49–53.

    Article  CAS  Google Scholar 

  61. Topping J, Dobson R, Lapin S, Maslyanskiy A, Kropshofer H, Leppert D, et al. The effects of intrathecal rituximab on biomarkers in multiple sclerosis. Mult Scler Relat Disord. 2016;6:49–53.

    Article  PubMed  Google Scholar 

  62. Komori M, Lin YC, Cortese I, Blake A, Ohayon J, Cherup J, et al. Insufficient disease inhibition by intrathecal rituximab in progressive multiple sclerosis. Ann Clin Transl Neurol. 2016;3(3):166–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bergman J, Burman J, Gilthorpe JD, Zetterberg H, Jiltsova E, Bergenheim T, et al. Intrathecal treatment trial of rituximab in progressive MS: an open-label phase 1b study. Neurology. 2018;91(20):e1893–901.

    Article  CAS  PubMed  Google Scholar 

  64. Lovett-Racke AE, Gormley M, Liu Y, Yang Y, Graham C, Wray S, et al. B cell depletion with ublituximab reshapes the T cell profile in multiple sclerosis patients. J Neuroimmunol. 2019;15(332):187–97.

    Article  CAS  Google Scholar 

  65. Gingele S, Jacobus TL, Konen FF, Hummert MW, Suhs KW, Schwenkenbecher P, et al. Ocrelizumab depletes CD20(+) T cells in multiple sclerosis patients. Cells. 2018;8(1).

  66. Dunn N, Juto A, Ryner M, Manouchehrinia A, Piccoli L, Fink K, et al. Rituximab in multiple sclerosis: frequency and clinical relevance of anti-drug antibodies. Mult Scler. 2018;24(9):1224–33.

    Article  CAS  PubMed  Google Scholar 

  67. Bar-Or A, Calabresi PA, Arnlod D, Markowitz C, Shafer S, Kasper LH, et al. Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, phase I trial. Ann Neurol. 2008;63(3):395–400.

    Article  CAS  PubMed  Google Scholar 

  68. Naismith RT, Piccio L, Lyons JA, Lauber J, Tutlam NT, Parks BJ, et al. Rituximab add-on therapy for breakthrough relapsing multiple sclerosis: a 52-week phase II trial. Neurology. 2010;74(23):1860–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Castillo-Trivino T, Braithwaite D, Bacchetti P, Waubant E. Rituximab in relapsing and progressive forms of multiple sclerosis: a systematic review. PLoS One. 2013;8(7):e66308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Alping P, Frisell T, Novakova L, Islam-Jakobsson P, Salzer J, Bjorck A, et al. Rituximab versus fingolimod after natalizumab in multiple sclerosis patients. Ann Neurol. 2016;79(6):950–8.

    Article  CAS  PubMed  Google Scholar 

  71. de Flon P, Gunnarsson M, Laurell K, Soderstrom L, Birgander R, Lindqvist T, et al. Reduced inflammation in relapsing-remitting multiple sclerosis after therapy switch to rituximab. Neurology. 2016;87(2):141–7.

    Article  CAS  PubMed  Google Scholar 

  72. Salzer J, Svenningsson R, Alping P, Novakova L, Bjorck A, Fink K, et al. Rituximab in multiple sclerosis: a retrospective observational study on safety and efficacy. Neurology. 2016;87(20):2074–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Granqvist M, Boremalm M, Poorghobad A, Svenningsson A, Salzer J, Frisell T, et al. Comparative effectiveness of rituximab and other initial treatment choices for multiple sclerosis. JAMA Neurol. 2018;75(3):320–7.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kappos L, Li. D, Calabresi PA. Long-term safety and efficacy of ocrelizumab in patients with relapsing-remitting multiple sclerosis: week 144 results of a phase II, randomised, multicentre trial. 28th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, Oct 10–13, 2012, Lyon, France.

  75. Havrdova E, Arnold DL, Bar-Or A, Comi G, Hartung HP, Kappos L, et al. No evidence of disease activity (NEDA) analysis by epochs in patients with relapsing multiple sclerosis treated with ocrelizumab vs interferon beta-1a. Mult Scler J Exp Transl Clin. 2018;4(1):2055217318760642.

    PubMed  PubMed Central  Google Scholar 

  76. Frau J, Coghe G, Lorefice L, Fenu G, Cocco E. New horizons for multiple sclerosis therapeutics: milestones in the development of ocrelizumab. Neuropsychiatr Dis Treat. 2018;14:1093–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hauser SL, Bar-Or A, Cohen J, Comi G, Correale J, Coyle PK, et al. Efficacy and safety of ofatumumab versus teriflunomide in relapsing multiple sclerosis: results of the phase 3 ASCLEPIOS I and II trials. Mult Scler. 2019;25(S2):890–938.

    Google Scholar 

  78. Fox EL-R, Wray S, Racke MK, Shubin R, Twyman C, Eubanks J, Su W. 6 Month results of a phase 2a multicenter study of ublituximab, a novel glycoengineered anti-CD20 monoclonal antibody, in relapsing multiple sclerosis. Mult Scler. 2018;24(S1):11–117.

    Google Scholar 

  79. Fox E. Final results of a placebo controlled, Phase 2 multicenter study of ublituximab (UTX), a novel glycoengineered anti-CD20 monoclonal antibody (mAb), in patients with relapsing forms of multiple sclerosis (RMS). Mult Scler. 2018;24(S2):8–120.

    Google Scholar 

  80. Fox E, Wray S, Shubin R, Lovett-Racke A, Huang D, Bass A, et al. Long-term follow-up results from the phase 2 multicenter study of ublituximab (UTX), a novel glycoengineered anti-CD20 monoclonal antibody (mAb), in patients with relapsing multiple sclerosis (RMS). Mult Scler. 2019;25(S2):357–580.

    Google Scholar 

  81. Steinman L, Fox E, Hartung H, Alvarez E, Qian P, Wray S, et al. Study design and patient demographics of the ULTIMATE phase III trials evaluating Ublituximab (UTX), a novel glycoengineered anti-CD20 monoclonal antibody (mAb), in patients with relapsing multiple sclerosis (RMS). Mult Scler. 2019;25(S2):523.

    Google Scholar 

  82. Theil D, Smith P, Huck C, Gilbart Y, Kakarieka A, Leppert D, et al. Imaging mass cytometry and single-cell genomics reveal differential depletion and repletion of B-cell populations following ofatumumab treatment in cynomolgus monkeys. Front Immunol. 2019;10:1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Memon AB, Javed A, Caon C, Srivastawa S, Bao F, Bernitsas E, et al. Long-term safety of rituximab induced peripheral B-cell depletion in autoimmune neurological diseases. PLoS One. 2018;13(1):e0190425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tallantyre EC, Whittam DH, Jolles S, Paling D, Constantinesecu C, Robertson NP, et al. Secondary antibody deficiency: a complication of anti-CD20 therapy for neuroinflammation. J Neurol. 2018;265(5):1115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ocrelizumab and PML. Genentech; 2019. https://www.ocrelizumabinfo.com/content/dam/gene/ocrelizumabinfo/pdfs/progressive-multifocal-leukoencephalopathy.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Soelberg Sorensen.

Ethics declarations

Funding

No sources of funding were used to prepare this manuscript.

Conflict of interest

F Sellebjerg has served on scientific advisory boards, been on steering committees of clinical trials, served as a consultant, received support for congress participation, received speaker honoraria, or received research support for his laboratory from Biogen, Merck, Novartis, Roche, Sanofi Genzyme, and Teva. M. Blinkenberg has received personal compensation for serving on scientific advisory boards for Genzyme, Roche, Biogen, Merck, Novartis, and Teva; has received speaker honoraria from Genzyme, Biogen, Merck, Novartis, Teva, and Roche; has received consulting honoraria from the Danish Multiple Sclerosis Society, Biogen, Teva, Roche, and Merck; and has received funding for travel from Genzyme, Roche, and Biogen. P. S. Sorensen has received personal compensation for serving on scientific advisory boards, steering committees, or independent data monitoring boards for Biogen, Merck, Novartis, Teva, GlaxoSmithKline, MedDay Pharmaceuticals, Genzyme, Celgene, and Forward Pharma, and has received speaker honoraria from Biogen, Merck, Teva, Genzyme, and Novartis.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sellebjerg, F., Blinkenberg, M. & Sorensen, P.S. Anti-CD20 Monoclonal Antibodies for Relapsing and Progressive Multiple Sclerosis. CNS Drugs 34, 269–280 (2020). https://doi.org/10.1007/s40263-020-00704-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-020-00704-w

Navigation