Skip to main content
Log in

Localized outbreaks in an S-I-R model with diffusion

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We investigate an SIRS epidemic model with spatial diffusion and nonlinear incidence rates. We show that for small diffusion rate of the infected class \(D_{I}\), the infected population tends to be highly localized at certain points inside the domain, forming K spikes. We then study three distinct destabilization mechanisms, as well as a transition from localized spikes to plateau solutions. Two of the instabilities are due to coarsening (spike death) and self-replication (spike birth), and have well-known analogues in other reaction–diffusion systems such as the Schnakenberg model. The third transition is when a single spike becomes unstable and moves to the boundary. This happens when the diffusion of the recovered class, \(D_{R}\) becomes sufficiently small. In all cases, the stability thresholds are computed asymptotically and are verified by numerical experiments. We also show that the spike solution can transit into an plateau-type solution when the diffusion rates of recovered and susceptible class are sufficiently small. Implications for disease spread and control through quarantine are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Let \(t=\frac{{\hat{t}}}{\nu },S=\sqrt{\frac{\nu }{\chi }}{\hat{S}},I=\sqrt{\frac{\nu }{\chi }}{\hat{I}},R=\sqrt{\frac{\nu }{\chi }} {\hat{R}}\) and define new parameters by \(\gamma =\nu {\hat{\gamma }},D_{S}=\nu \hat{D_{S}},D_{I}=\nu \varepsilon ^{2},D_{R}=\nu \hat{D_{R}}.\) Upon dropping the hats, this yields (3).

References

  • Arino J, Van den Driessche P (2003) A multi-city epidemic model. Math Popul Stud 10(3):175–193

    Article  MathSciNet  MATH  Google Scholar 

  • Arino J, Jordan R, Van den Driessche P (2007) Quarantine in a multi-species epidemic model with spatial dynamics. Math Biosci 206(1):46–60

    Article  MathSciNet  MATH  Google Scholar 

  • Buttenschoen A, Kolokolnikov T, Ward MJ, Wei J (2019) Cops-on-the-dots: the linear stability of crime hotspots for a 1-D reaction–diffusion model of urban crime. Europ J Appl Math. https://doi.org/10.1017/S0956792519000305

  • Doelman A, Kaper TJ, Zegeling PA (1997) Pattern formation in the one-dimensional gray–scott model. Nonlinearity 10(2):523

    Article  MathSciNet  MATH  Google Scholar 

  • Doelman A, Gardner RA, Kaper TJ (2001) Large stable pulse solutions in reaction–diffusion equations. Indiana Univ Math J 50(1):443–507

    Article  MathSciNet  MATH  Google Scholar 

  • Doran RJ, Laffan SW (2005) Simulating the spatial dynamics of foot and mouth disease outbreaks in feral pigs and livestock in Queensland, Australia, using a susceptible-infected-recovered cellular automata model. Prev Vet Med 70(1–2):133–152

    Article  Google Scholar 

  • Feng Z, Velasco-Hernández JX (1997) Competitive exclusion in a vector-host model for the dengue fever. J Math Biol 35(5):523–544

    Article  MathSciNet  MATH  Google Scholar 

  • Fuks H, Lawniczak AT (2001) Individual-based lattice model for spatial spread of epidemics. Discrete Dyn Nat Soc 6(3):191–200

    Article  MATH  Google Scholar 

  • Hale JK, Peletier LA, Troy WC (1999) Stability and instability in the gray–scott model: the case of equal diffusivities. Appl Math Lett 12(4):59–65

    Article  MathSciNet  MATH  Google Scholar 

  • Hale JK, Peletier LA, Troy WC (2000) Exact homoclinic and heteroclinic solutions of the gray–scott model for autocatalysis. SIAM J Appl Math 61(1):102–130

    Article  MathSciNet  MATH  Google Scholar 

  • Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653

    Article  MathSciNet  MATH  Google Scholar 

  • Iron D, Ward MJ (2002) The dynamics of multispike solutions to the one-dimensional gierer–meinhardt model. SIAM J Appl Math 62(6):1924–1951

    Article  MathSciNet  MATH  Google Scholar 

  • Iron D, Ward MJ, Wei J (2001) The stability of spike solutions to the one-dimensional gierer–meinhardt model. Phys D Nonlinear Phenom 150(1):25–62

    Article  MathSciNet  MATH  Google Scholar 

  • Jeefoo P (2012) Spatial patterns analysis and hotspots of hiv/aids in Phayao province, Thailand. Arch Des Sci 65(9):37–50

    Google Scholar 

  • Kang K, Kolokolnikov T, Ward MJ (2007) The stability and dynamics of a spike in the one-dimensional keller-segel model. IMA J. Appl. Math 72(2):140–162

    Article  MathSciNet  MATH  Google Scholar 

  • Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc R Soc Lond Ser A Contain Papers Math Phys Character 115(772):700–721

    MATH  Google Scholar 

  • Kolokolnikov T, Ward MJ (2004) Bifurcation of spike equilibria in the near-shadow gierer–meinhardt model. DSDS B 4:1033–1064

    MathSciNet  MATH  Google Scholar 

  • Kolokolnikov T, Wei J (2018) Pattern formation in a reaction–diffusion system with space-dependent feed rate. SIAM Rev 60(3):626–645

    Article  MathSciNet  MATH  Google Scholar 

  • Kolokolnikov T, Ward MJ, Wei J (2005a) The existence and stability of spike equilibria in the one-dimensional gray–scott model on a finite domain. Appl Math Lett 18(8):951–956

    Article  MathSciNet  MATH  Google Scholar 

  • Kolokolnikov T, Ward MJ, Wei J (2005b) The existence and stability of spike equilibria in the one-dimensional gray–scott model: the low feed-rate regime. Stud Appl Math 115(1):21–71

    Article  MathSciNet  MATH  Google Scholar 

  • Kolokolnikov T, Ward MJ, Wei J (2005c) The existence and stability of spike equilibria in the one-dimensional gray–scott model: the pulse-splitting regime. Phys D Nonlinear Phenom 202(3–4):258–293

    Article  MathSciNet  MATH  Google Scholar 

  • Kolokolnikov T, Ward M, Wei J (2012) The stability of steady-state hot-spot patterns for a reaction–diffusion model of urban crime. arXiv preprint arXiv:1201.3090

  • Kruse GR, Barbour R, Heimer R, Shaboltas AV, Toussova OV, Hoffman IF, Kozlov AP (2009) Drug choice, spatial distribution, HIV risk, and HIV prevalence among injection drug users in St. Petersburg, Russia. Harm Reduct J 6(1):22

    Article  Google Scholar 

  • Kuperman M, Abramson G (2001) Small world effect in an epidemiological model. Phys Rev Lett 86(13):2909

    Article  Google Scholar 

  • Lamb Jr GL (1980) Elements of soliton theory. Wiley, New York

    Google Scholar 

  • Lloyd AL, Jansen VAA (2004) Spatiotemporal dynamics of epidemics: synchrony in metapopulation models. Math Biosci 188(1–2):1–16

    Article  MathSciNet  MATH  Google Scholar 

  • Maini PK, Woolley TE, Baker RE, Gaffney EA, Lee SS (2012) Turing’s model for biological pattern formation and the robustness problem. Interface Focus 2:487–496

    Article  Google Scholar 

  • Muratov CB, Osipov VV (2000) Static spike autosolitons in the gray–scott model. J Phys A Math General 33(48):8893

    Article  MathSciNet  MATH  Google Scholar 

  • Muratov CB, Osipov VV (2002) Stability of the static spike autosolitons in the gray–scott model. SIAM J Appl Math 62(5):1463–1487

    Article  MathSciNet  MATH  Google Scholar 

  • Murray JD (2001) Mathematical biology. II Spatial models and biomedical applications, Interdisciplinary applied mathematics, vol 18. Springer, New York

    Google Scholar 

  • Otwombe LA (2014) Spatial distribution and analysis of factors associated wiyh HIV infection among young people in Eastern Africa: applied to the MEASURE demographic and health survey data collected between 2007 and 2011. PhD thesis

  • Painter KJ, Hillen T (2011) Spatio-temporal chaos in a chemotaxis model. Phys D Nonlinear Phenom 240(4):363–375

    Article  MATH  Google Scholar 

  • Reynolds WN, Pearson JE, Ponce-Dawson S (1994) Dynamics of self-replicating patterns in reaction diffusion systems. Phys Rev Lett 72(17):2797

    Article  Google Scholar 

  • Reynolds WN, Ponce-Dawson S, Pearson JE (1997) Self-replicating spots in reaction–diffusion systems. Phys Rev E 56(1):185

    Article  MathSciNet  Google Scholar 

  • Sherratt JA, Lord GJ (2007) Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments. Theor Popul Biol 71(1):1–11

    Article  MATH  Google Scholar 

  • Sun G-Q (2012) Pattern formation of an epidemic model with diffusion. Nonlinear Dyn 69(3):1097–1104

    Article  MathSciNet  Google Scholar 

  • Tanser F, Bärnighausen T, Cooke GS, Newell M-L (2009) Localized spatial clustering of hiv infections in a widely disseminated rural south african epidemic. Int J Epidemiol 38(4):1008–1016

    Article  Google Scholar 

  • van den Driessche P, Watmough J (2000) A simple SIS epidemic model with a backward bifurcation. J Math Biol 40(6):525–540

    Article  MathSciNet  MATH  Google Scholar 

  • Ward MJ, Wei J (2002) The existence and stability of asymmetric spike patterns for the schnakenberg model. Stud Appl Math 109(3):229–264

    Article  MathSciNet  MATH  Google Scholar 

  • Wei J (1999) On single interior spike solutions of the gierer–meinhardt system: uniqueness and spectrum estimates. Eur J Appl Math 10(4):353–378

    Article  MathSciNet  MATH  Google Scholar 

  • Wei J, Winter M (2013) Mathematical aspects of pattern formation in biological systems. Springer, Berlin

    MATH  Google Scholar 

  • Yuan H, Chen G (2008) Network virus-epidemic model with the point-to-group information propagation. Appl Math Comput 206(1):357–367

    MathSciNet  MATH  Google Scholar 

  • Zulu LC, Kalipeni E, Johannes E (2014) Analyzing spatial clustering and the spatiotemporal nature and trends of hiv/aids prevalence using gis: the case of malawi, 1994–2010. BMC Infect Dis 14(1):285

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank an anonymous referees for many useful suggestions which improved the exposition significantly. T.K. and D.I are funded by NSERC discovery grant. C.G. is funded in part by Nova Scotia Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore Kolokolnikov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gai, C., Iron, D. & Kolokolnikov, T. Localized outbreaks in an S-I-R model with diffusion. J. Math. Biol. 80, 1389–1411 (2020). https://doi.org/10.1007/s00285-020-01466-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-020-01466-1

Mathematics Subject Classification

Navigation