Skip to main content

Advertisement

Log in

Compositions and mobility of major, δD, δ18O, trace, and REEs patterns in water sources at Benue River Basin—Cameroon: implications for recharge mechanisms, geo-environmental controls, and public health

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Hydro-geochemical data are required for understanding of water quality, provenance, and chemical composition for the 2,117,700 km2 Niger River Basin. This study presents hydro-geochemical analysis of the Benue River Basin, a major tributary of the Niger River. The distribution of major ions, Si, δD, and δ18O, trace and rare-earth elements (TE and REEs, respectively) composition in 86 random water samples, revealed mixing of groundwater with surface water to recharge shallow aquifers by July and September rains. Equilibration of groundwater with kaolinite and montmorillonites, by incongruent dissolution, imprints hydro-chemical signatures that vary from Ca + Mg − NO3 in shallow wells to Na + K − HCO3 in boreholes and surface waters, with undesirable concentrations of fluoride identified as major source of fluorosis in the local population. Our results further indicate non-isochemical dissolution of local rocks by water, with springs, wells and borehole waters exhibiting surface water-gaining, weakest water–rock interaction, and strongest water–rock interaction processes, respectively. Poorly mobile elements (Al, Th and Fe) are preferentially retained in the solid residue of incongruent dissolution, while alkalis, alkaline earth and oxo-anion-forming elements (U, Mo, Na, K, Rb, Ca, Li, Sr, Ba, Zn, Pb) are more mobile and enriched in the aqueous phase, whereas transition metals display an intermediate behavior. Trace elements vary in the order of Ba > Sr > Zn > Li > V > Cu > Ni > Co > As > Cr > Sc > Ti > Be > Pb > Cd, with potentially harmful elements such as Cd, As, and Pb mobilized in acidic media attaining near-undesirable levels in populated localities. With the exception of Y, REEs distribution in groundwater in the order of Eu > Sm > Ce > Nd > La > Gd > Pr > Dy > Er > Yb > Ho > Tb > Tm differs slightly with surface water composition. Post-Archean Average Australian Shale-normalized REEs patterns ranging from 1.08 to 199 point to the dissolution of silicates as key sources of trace elements to groundwater, coupled to deposition by eolian dust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Aiuppa, A., Allard, P., D’Alessandro, W., Michel, A., Parello, F., Trueil, M., et al. (2000). Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily). Geochemica et Cosmochimica Acta, 64(11), 1827–1841.

    CAS  Google Scholar 

  • Aiuppa, A., Federico, C., Allard, P., Gurrieri, S., & Valenza, M. (2005). Trace metal modelling of groundwater-gas-rock interactions in a volcanic aquifer: Mount Vesuvius, Southern Italy. Chemical Geology, 216, 289–311.

    CAS  Google Scholar 

  • Appelo, C. A. J., & Postma, D. (1993). Geochemistry, groundwater, and pollution (p. 536). Netherlands: Balkema.

    Google Scholar 

  • Asai, K., Satake, H., & Tsujimura, M. (2010). Isotopic approach to understanding the groundwater flow system within the andesitic strato-volcano in a temperate humid region: case study of Ontake volcano, Central Japan. Hydrological Processes, 23, 559–571.

    Google Scholar 

  • Azzaz, H., Cherchali, M., Meddi, M., Houha, B., Puig, J. M., & Achachi, A. (2008). The use of environmental isotopic and hydrochemical tracers to characterize the functioning of karst systems in the Tlemcen Mountains, northwest Algeria. Hydrogeology Journal, 16, 593–607.

    Google Scholar 

  • Bau, M. (1991). Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93, 219–230.

    CAS  Google Scholar 

  • Bessong, M. (2012). Paléoenvironnements et diagenèse dans un réservoir gréseux d’âge crétacé du fossé de la Bénoué au Nord Cameroun: les grès de Garoua (p. 197). Thèse de Doctorat: Université de Poitiers.

    Google Scholar 

  • Birke, M., Reimann, C., Demetriades, A., Rauch, U., Lorenz, H., Harazim, B., et al. (2010). Determination of major and trace elements in European bottled mineral water—analytical methods. Journal of Geochemical Exploration, 107, 217–226. https://doi.org/10.1016/j.gexplo.2010.05.005.

    Article  CAS  Google Scholar 

  • Blanken, J., & Pecher, S. (2013). Programme “changements climatiques, gestion des ressources naturelles et securite alimentaire dans le bassin versant de la Bénoué”. Technical Report.

  • Bouyo, M. H., Zhao, Y., Penaye, J., Zhang, S. H., & Njel, U. O. (2015). Neoproterozoic subduction-related metavolcanics and metasedimentary rocks from the Rey Bouba Greenstone Belt of north-central Cameroon in the Central African Fold Belt: New insights into a continental arc geodynamic setting. Precambrian Research, 261, 40–53.

    CAS  Google Scholar 

  • Brand, W. A., et al. (2009). Cavity ring-down spectroscopy versus high temperature conversion isotope ratio mass spectrometry; a case study on δ2H and δ18O of pure water samples and alcohol/water mixtures. Rapid Communication in Mass Spectrometer, 23, 1879–1884. https://doi.org/10.1002/rcm.4083.

    Article  CAS  Google Scholar 

  • Brioschi, L., Steinmann, M., Lucot, E., Pierret, M. C., Stille, P., Prunier, J., et al. (2013). Transfer of rare earth elements (REE) from natural soil to plant systems: implications for the environmental availability of anthropogenic REE. Plant and Soil, 366, 143–163.

    CAS  Google Scholar 

  • Brunet, M., Dejax J., Brillanceau, A., Congleton, J., Downs, W., Duperon-Laudoueneix, M., Eisenmann, V., Flanagan, K., Flynn, L., Heintz, E., Hell, J., Jacobs, L., Jehenne, Y., Ndjeng, E., Mouchelin, G., Pilbeam, D. (1988). Mise en évidence d’une sédimentation précoce d’âge Barrémien dans le fossé de la Bénoué en Afrique occidentale (Bassin du Mayo Oulo Léré, Cameroun), en relation avec l’ouverture de l’Atlantique Sud. Comptes rendus de l’Académie des Sciences 306 (II), 1125–1130.

  • Budyko, M. I. (1951). On climate factors of runoff. Prob. Fiz. Geogr. 16 in Russian Canadian Council of Ministers of the Environment (2001a) Canadian water quality guidelines for the protection of aquatic life. CCME water quality index 1.0. In Technical report. http://www.ccme.ca

  • Censi, P., Raso, M., Yechieli, Y., Ginat, H., Saiano, F., Zuddas, P., et al. (2017). Geochemistry of Zr, Hf, and REE in a wide spectrum of Eh and water composition: The case of Dead Sea Fault system (Israel). Geochemistry, Geophysics, Geosystems, 18, 844–857. https://doi.org/10.1002/2016GC006704.

    Article  CAS  Google Scholar 

  • Chen, S., & Gui, H. (2017). Hydrogeochemical characteristics of groundwater in the coal-bearing aquifer of the Wugou coal mine, northern Anhui Province, China. Applied Water Sciences, 7, 1903–1910.

    CAS  Google Scholar 

  • Craig, H. (1961). Isotopic variation in meteoric water. Science, 133, 1702–1703.

    CAS  Google Scholar 

  • Davies, T. C. (2013). Geochemical variables as plausible aetiological cofactors in the incidence of some common environmental diseases in Africa. Journal of African Earth Sciences, 79, 24–49.

    CAS  Google Scholar 

  • Deshpande, R. D., Bhattacharya, S. K., Jani, R. A., & Gupta, S. K. (2003). Distribution of oxygen and hydrogen isotopes in shallow groundwaters from southern India: influence of a dual monsoon system. Journal of Hydrology, 271, 226–239.

    CAS  Google Scholar 

  • Deutsch, W. J. (1997). Groundwater geochemistry: Fundamentals and applications to contamination (p. 221). New York: Lewis.

    Google Scholar 

  • Duvert, C., Cendón, D. I., Raiber, M., Seidel, J., & Cox, M. E. (2015). Seasonal and spatial variations in rare earth elements to identify inter-aquifer linkages and recharge processes in an Australian catchment. Chemical Geology, 369, 83–97.

    Google Scholar 

  • Edet, A. E. (2004). A preliminary assessment of the concentrations of rare earth elements in an acidic fresh groundwater (south-eastern Nigeria). Applied Earth Science, 113, 100–109.

    Google Scholar 

  • Edmunds, W. M., Carrillo-Rivera, J. J., & Cardona, A. (2002). Geochemical evolution of groundwater beneath Mexico city. Journal of Hydrology, 258, 1–24.

    CAS  Google Scholar 

  • Eyong, J. T., Bessong, M., Hell, J. V., Mfoumbeng, M. P., Ntsama, A. J., & Ngjeng, E. (2013). Lithostratigraphy of the Mayo Oulo-Lere basin Northern Cameroon (W. Africa). Journal of Geological Resource and Engineering, 1, 2193–2328.

    Google Scholar 

  • Fantong, W. Y., Fouepe, A. T., Ketchemen-Tandia, B., Kuitcha, D., Ndjama, J., Fouepe, T. A., et al. (2016). Variation of hydrogeochemical characteristics of water in surface flows, shallow wells, and boreholes in the coastal city of Douala (Cameroon). Hydrol: Science Journal. https://doi.org/10.1080/0262666720161173789.

    Book  Google Scholar 

  • Fantong, W. Y., Kamtchueng, B. T., Yamaguchi, K., Ueda, A., Issa, N. R., Wirmvem, M. J., et al. (2015). Characteristics of chemical weathering and water–rock interaction in Lake Nyos dam (Cameroon): Implications for vulnerability to failure and re-enforcement. Journal of African Earth Sciences, 101, 42–55.

    CAS  Google Scholar 

  • Fantong, W. Y., Satake, H., Aka, F. T., Ayonghe, S. N., Asai, K., Mandal, A., et al. (2010a). Hydrochemical and isotopic evidence of recharge, apparent age, and flow direction of groundwater in Mayo Tsanaga River Basin, Cameroon: Bearings on contamination. Environmental Earth Sciences, 60, 107–120.

    CAS  Google Scholar 

  • Fantong, W. Y., Satake, H., Ayonghe, S. N., Aka, F. T., & Kazuyoshi, A. (2009). Hydrogeochemical controls and usability of groundwater in the semi-arid Mayo Tsanaga River Basin: Far north province, Cameroon. Journal of Environmental Geology, 58, 1281–1293.

    CAS  Google Scholar 

  • Fantong, W. Y., Satake, H., Ayonghe, S. N., Suh, C. E., Adelana, S. M. A., Fantong, E. B. S., et al. (2010b). Geochemical provenance and spatial distribution of fluoride in groundwater of Mayo Tsanaga River Basin, Far North Region, Cameroon: implications for incidence of fluorosis and optimal consumption dose. Environmental Geochemistry and Health, 32, 147–163.

    CAS  Google Scholar 

  • Faure, G. (1991). Principles and applications of inorganic geochemistry (p. 626). New York: Macmillan Publishing.

    Google Scholar 

  • Ferreira, C. A., Helena, E. L., Palmieri, de Maria Ângela B. C. M. (2015). Rare earth elements and uranium in fountain waters from different towns of the iron quadrangle, Mg, Brazil. In International nuclear atlantic conference. Associação Brasileira De Energia Nuclear – ABEN. ISBN: 978-85-99141-06-9

  • Fodoue, Y., Nguetnkam, J. P., Tchameni, R., Basga, S. D., & Penaye, J. (2015). Assessment of the Fertilizing effect of Vivianite on the growth and yield of the Bean “Phaseolus vulgaris” on oxisoils from Ngaoundere (central North Cameroon). International Research Journal of Earth Sciences., 3(4), 18–26.

    Google Scholar 

  • Gammons, C. H., Wood, S. A., Pedrozo, F., Varekamp, J. C., Nelson, B. J., Shope, C. L., et al. (2005). Hydrogeochemistry and rare earth element behavior in a volcanically acidified watershed in Patagonia, Argentina. Chemical Geology, 222, 249–267.

    CAS  Google Scholar 

  • Garrels, R. M., & Mackenzie, F. T. (1967). Origin of the chemical composition of some springs and lakes. In R. F. Gould (Ed.), Equilibrium concept in natural water systems (pp. 222–242). Washington, DC: American Chemical Society.

    Google Scholar 

  • Gat, J. R. (2010). Isotope hydrology: A study of the water cycle (Vol. 6)., Series on environmental science and management London: Imperial College Press.

    Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling World water chemistry. Science, 170, 1088–1090. https://doi.org/10.1126/science.170.3962.1088.

    Article  CAS  Google Scholar 

  • Gimeno, M. J., Auqué, L. F., & Nordstrom, D. K. (2000). REE speciation in low-temperature acidic waters and the competitive effects of aluminium. Chemical Geology, 165, 167–180.

    Google Scholar 

  • Gislason, S. R., Arnorsson, S., & Armannsson, H. (1996). Chemical weathering of basalts in southwest Iceland: Effects of runoff, age of rocks and vegetative/glacial cover. American Journal of Science, 296, 837–907.

    CAS  Google Scholar 

  • Goni, I. B. (2006). Tracing stable isotope values from meteoric water to groundwater in the south western part of the Chad basin. Hydrogeology Journal, 14, 4331–4339.

    Google Scholar 

  • Guo, H. M., Zhang, B., Wang, G. C., & Shen, Z. L. (2010). Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia. Chemical Geology, 270, 117–125.

    CAS  Google Scholar 

  • Houston, J. (2007). Recharge to groundwater in the Turi basin, northern Chile: An evaluation based on tritium and chloride mass balance techniques. Journal of Hydrology, 334, 534–544.

    CAS  Google Scholar 

  • Hervieu, J. (1969). Le quaternaire du Nord-Cameroun, schema d′evolution geomorphologique et relations avec la pedogenese. Cahiers ORSTOM, Serie Pedologie, 8(3), 295–317.

    Google Scholar 

  • Johannesson, K. H., Farham, I. M., Guo, C. X., & Stetzenbach, K. J. (1999). Rare earth element fractionation and concentration variations along a groundwater flow path within a shallow, basin-fill aquifer, southern Nevada, USA. Geochemica et Cosmochima Acta, 63, 2697–2708.

    CAS  Google Scholar 

  • Johannesson, K. H., & Hendry, M. J. (2000). Rare earth element geochemistry of groundwaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. Geochimica et Cosmochimica Acta, 64(9), 1493–1509.

    CAS  Google Scholar 

  • Johannesson, K. H., & Lyons, W. B. (1995). Rare-earth element geochemistry of Colour Lake, an acidic freshwater lake on Axel Heiberg Island, Northwest Territories, Canada. Chemical Geology, 119, 209–223.

    CAS  Google Scholar 

  • Jokam Nenkam, T. L. L., Nbendah, P., Fantong, W. Y., Takoundjou, A. F. (2019). Etude Pilote sur la Pollution des Eaux de Surface et Souterraines a Garoua et ses environs et son Impact sur la Sante des Populations Riveraines (EPESS Garoua). Federal Institute for Geosciences and Natural Resources (BGR). In K. Robert, V. Sarah, & W. Charlotte (Eds.), Technical report No. 05-2388 (p. 125).

  • Kamtchueng, B. T., Fantong, W. Y., Ueda, A., Tiodjio, E. R., Anazawa, K., Wirmvem, M. J., et al. (2014). Assessment of shallow groundwater in Lake Nyos catchment: Implications for hydrogeochemical controls and uses. Environmental Earth Sciences. https://doi.org/10.1007/s12665-014-3278-6.

    Article  Google Scholar 

  • Kazemi, G. A., Lehr, J. H., & Perrochet, P. (Eds.). (2006). Groundwater age (p. 325). Hoboken, New Jersey: Wiley.

    Google Scholar 

  • Kebede, S., Travi, Y., Alemayehu, T., & Ayenew, T. (2005). Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia. Applied Geochemistry, 20, 1658–1676.

    CAS  Google Scholar 

  • Kendall, C., & Doctor, D. H. (2011). Stable isotope applications in hydrologic studies. In H. D. Holland & K. K. Turekian (Eds.), Isotope geochemistry (1st ed., pp. 181–220). London: Academic Press.

    Google Scholar 

  • Leduc, C., Taupin, J. D., & Gal La Salle, C. (1996). Estimation de la recharge de la nappe phreatique du Continental Terminal (Niamey, Niger). Comptes Rendus de l’Académie des Sciences IIa, 323, 599–605.

    CAS  Google Scholar 

  • Lis, G., Wassenaar, L. L., & Hendry, M. J. (2008). High precision laser spectrometry D/H and 18O/16O measurements of microliter natural water samples. Analytical Chemistry, 80, 287–293. https://doi.org/10.1021/ac701716q.

    Article  CAS  Google Scholar 

  • Liu, H., Guo, H., Xing, L., Zhan, Y., Li, F., Shao, J., et al. (2016). Geochemical behaviours of rare earth elements in groundwater along a flow path in the North China Plain. Journal Asian Earth Sciences, 117, 33–51.

    Google Scholar 

  • Louvat, P. (1997). Etude geochemique de l`erosion fluviale des iles volcaniques: l`aide des bilans d`elements majeurs et traces. These de doctorat: Universite Paris VII.

    Google Scholar 

  • Ma, L., Jin, L., & Brantley, S. L. (2011). How mineralogy and slope aspect affect REE release and fractionation during shale weathering in the Susquehanna/Shale Hills Critical Zone Observatory. Chemical Geology, 290, 31–49.

    CAS  Google Scholar 

  • Masuda, A., Kawakami, O., Dohmoto, Y., & Takenaka, T. (1987). Lanthanide tetrad effects in nature: Two mutually opposite types, W and M. Geochemical Journal, 21, 119–124.

    CAS  Google Scholar 

  • Maurin, J. C., & Guiraud, R. (1989). Relations entre tectonique et sédimentation dans les bassins barrémo-aptiens du Nord Cameroun. Comptes rendus de l’Académie des Sciences, 308(II), 787–792.

    Google Scholar 

  • Mbonu, M., & Travi, Y. (1994). Labelling of precipitation by stable isotopes (18O, 2H) over the Jos Plateau and the surrounding plains (north-central Nigeria). Journal of African Earth Sciences, 19, 91–98.

    Google Scholar 

  • McLennan, S. M. (1989). Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. In B. R. Liplin & G. A. McKay (Eds.), Geochemistry and mineralogy of rare earth elements. Reviews in mineralogy and geochemistry 21 (pp. 169–200). Chantilly: Mineralogical Society of America.

    Google Scholar 

  • Meybeck, M. (1997). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287, 401–428.

    Google Scholar 

  • Migaszewski, Z. M., & Galuszka, A. (2015). The characteristics, occurrence, and geochemical behaviour of rare earth elements in the environment: A review. Critical Reviews in Environmental Science and Technology, 45, 471–492.

    Google Scholar 

  • Migaszewski, Z. M., Gałuszka, A., & Migaszewski, (2014). The study of rare earth elements in farmer’s well waters of the Podwiśniówka acid mine drainage area (south-central Poland). Environmental Monitoring and Assessment, 186, 1609–1622.

    CAS  Google Scholar 

  • Molua, E. L. (2006). Climatic trends in Cameroon: implications for agricultural management. Climatic Research, 30, 255–262.

    Google Scholar 

  • Munemoto, T., Ohmori, K., & Iwatsuki, (2015). Rare earth elements (REE) in deep groundwater from granite and fracture-filling calcite in the Tono area, central Japan: Prediction of REE fractionation in paleo- to present -day groundwater. Chemical Geology, 417, 58–67.

    CAS  Google Scholar 

  • Nagaraju, A., Surresh, S., Killam, K., & Hudson-Edwards, K. (2006). Hydrogeochemistry of waters of Mangampeta Barite Mining Area, Cuddapach Basin, Andhra Pradesh, India. Turkish Journal of Environmental Sciences, 30, 203–219.

    CAS  Google Scholar 

  • Nash, W. P. (1984). Phosphate minerals in terrestrial igneous and metamorphic rocks. In J. O. Nriagu & P. B. Moore (Eds.), Phosphate minerals (pp. 215–241). Berlin Heidelberg: Springer.

    Google Scholar 

  • Ndjigui, P. D., Beauvais, A., Fadil-Djenabou, S., & Ambrosi, J.-P. (2014). Origin and evolution of Ngaye River alluvial sediments, Northern Cameroon: Geochemical constraints. Journal of African Earth Sciences, 100, 164–178.

    CAS  Google Scholar 

  • Nesbitt, H. W., & Wilson, R. E. (1992). Recent chemical weathering of basalts. American Journal of Science, 292, 740–777.

    CAS  Google Scholar 

  • Njitchoua, R., Aranyossy, J. F., Fontes, J. C., Michelot, J. L., Naah, E., & Zuppi, G. M. (1995). Oxygen-18, deuterium et chlorures dans les precipitations a Garoua (Nord-Cameroon): implications meteorolgiques. Comptes rendus de l’Académie des Sciences, 321(IIa), 853–860.

    CAS  Google Scholar 

  • Njitchoua, R., Dever, L., Fontes, J.-C., & Naah, E. (1997). Geochemistry, origin and recharge mechanisms of groundwaters from the Garoua Sandstone aquifer, northen Cameroon. Journal of Hydrology, 190, 123–140.

    CAS  Google Scholar 

  • Nkotagu, H. (1996). Application of environmental isotopes to groundwater recharge studies in a semi-arid fractured crystalline basement area of Dodoma, Tanzania. Journal of African Earth Sciences, 22, 443–457.

    CAS  Google Scholar 

  • Noak, C. W., Dzombak, D. A., & Karamalidis, A. K. (2014). Rare earth element distributions and trends in natural waters with a focus on groundwater. Environmental Science and Technology, 48, 4317–4326.

    Google Scholar 

  • Nolla, J. D., Hell, J. V., Ngos, S., Bessong, M., Mfoumbeng, M. P., Eyong, T. J., et al. (2015). Lithostratigraphy of the Koum Basin (Northern Cameroon). International Journal of Multidisciplinary Research and Development, 2(6), 103–114.

    Google Scholar 

  • Ntsama, J. A. (2013). Magnétostratigraphie et sédimentologie des formations crétacées des bassins sédimentaires d’Hamakoussou et du Mayo Oulo-Léré au Nord-Cameroun (Fossé de la Bénoué). In Thèse Terre solide et enveloppes superficielles (p. 193). Poitiers: Université de Poitiers.

  • Ntsama, A. J., Bessong, M., Hell, J. V., Mbesse, C. O., Nolla, J. D., Dissombo, E. A. N., et al. (2014). The Importance of Diagenetic Processes in Sandstones Facies of the Hamakoussou Sedimentary Basin in North Cameroon: Influence on Reservoir Quality. International Journal of Sciences: Basic and Applied Research, 13, 220–230.

    Google Scholar 

  • Petrides, B., Cartwright, I., & Weaver, T. R. (2006). The evolution of groundwater in the Tyrell catchment, south-central Murray Basin, Victoria, Australia. Hydrogeol Journal, 14, 1522–1543.

    CAS  Google Scholar 

  • Pignotti, E., Dinelli, E., & Birke, M. (2017). Geochemical characterization and rare earth elements anomalies in surface- and groundwaters of the Romagna area (Italy). Rendiconti Lincei, 28, 265–279.

    Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water analyses. American Geophysical Union Transactions., 25, 914–923.

    Google Scholar 

  • Rollinson, H. R. (1993). Using Geochemical data: Evaluation, Presentation, Interpretation (p. 352). Singapore: Longman Singapore Publishers Ltd.

    Google Scholar 

  • Scalon, B. R., et al. (2006). Global synthesis of groundwater recharge in semi-arid and arid regions. Hydrological Processes, 20, 3335–3370. https://doi.org/10.1002/hyp.6335.

    Article  CAS  Google Scholar 

  • Schwoerer, P. (1965). Carte de reconnaissance à l’échelle du 1/500 000. Notice explicative sur la feuille Garoua-Est. In Yaoundé (Ed.), Direction des Mines et de la Géologie du Cameroun, (p. 49).

  • Shivanna, K., Tirumalesh, K., Noble, J., Joseph, T. B., Singh, G., Joshi, A. P., et al. (2008). Isotope techniques to identify recharge areas of springs for rainwater harvesting in the mountainous region of Gaucher area, Chamoli District, Uttarakhand. Current Sciences, 94, 1003–1011.

    CAS  Google Scholar 

  • Sholkovitz, E. R., Landing, W. M., & Lewis, B. L. (1994). Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater. Geochimica et Cosmochimica Acta, 58, 1567–1579.

    CAS  Google Scholar 

  • Silvera, S., & Rohan, T. (2007). Trace elements and cancer risk: a review of the epidemiological evidence. Cancer Causes and Control, 18(1), 7–27.

    Google Scholar 

  • Srinivasamoorthy, K., Chindambaram, S., Prasanna, M. V., Vasanthavihar, M., Peter, J., & Anandhan, P. (2008). Identification of major sources controlling groundwater chemistry from a hard rock terrain-A case study from Mettur taluk, Salem district, Tamil Nadu, India. Journal of Earth System Science, 117(1), 49–58.

    CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: Chemical equilibria and rates in natural waters. New Jersey: Wiley.

    Google Scholar 

  • Subramani, T., Rajmohan, N., & Elango, L. (2010). Groundwater geochemistry and identification of hydrogeochemical processes in hard rock region, Southern India. Environmental Monitoring and Assessment, 162, 123–137.

    CAS  Google Scholar 

  • Sultan, K., & Shazilli, A. A. (2009). Rare earth elements in tropical surface water, soil and sediments of the Terengganu River Basin, Malaysia. Journal of Rare Earths, 27, 1073–1078.

    Google Scholar 

  • Takahashi, Y., Yoshida, H., Sato, N., Hama, K., Yasu, Y., & Shimizu, H. (2002). W-and M- type tetrad effects in REE patterns for water-rock system in the Tono uranium deposit, central Japan. Chemical Geology, 184, 311–335.

    CAS  Google Scholar 

  • Tang, J., & Johannesson, K. H. (2006). Controls on the geochemistry of rare earth elements along a groundwater flow path in the Carrizo Sand aquifer, Texas, USA. Chemical Geology, 225, 156–171.

    CAS  Google Scholar 

  • Taran, Y., Rouwet, D., Inguaggiato, S., & Aiuppa, A. (2008). Major and trace element geochemistry of neutral and acidic thermal springs at El Chichon volcano, Mexico: Implications for monitoring of the volcanic activity. Journal of Volcanology and Geothermal Research, 178, 224–236.

    CAS  Google Scholar 

  • Tardy, Y. (1971). Characterization of the principal weathering types by the geochemistry of waters from some European and African crystalline massifs. Chemical Geology, 7, 253–271.

    CAS  Google Scholar 

  • Tayie, F. (2004). Pica: motivating factors and health issues. African Journal of Food, Agriculture, Nutrition and Development 4 (1): http://www.bioline.org.br/. Accessed 18 July 2019.

  • Taylor, R. G., & Howard, K. W. F. (1996). Groundwater recharge in the Victoria Nile basin of East Africa: support for the soil moisture balance method using stable isotope and flow modelling studies. Journal of Hydrology, 180, 31–53.

    Google Scholar 

  • Thomas, J. M., Welch, A. H., & Preissler, A. M. (1989). Geochemical evolution of groundwater in Smith Creek Valley—a hydrologically closed basin in central Nevada, USA. Applied Geochemistry, 4, 493–510.

    CAS  Google Scholar 

  • Tillement, B. (1972). Hydrogeologie du Nord—Cameroun. Rapport 6, Direction des Mines et de la Geologie, Yaounde, Cameroon (p. 294)

  • Tsujimura, M., Abe, Y., Tanaka, T., Shimada, J., Higuchi, S., Yamanaka, T., et al. (2007). Stable isotopic and geochemical characteristics of groundwater in Kherlin River Basin: a semiarid region in Eastern Mongolia. Journal of Hydrology, 333, 47–57.

    Google Scholar 

  • Vázquez-Ortega, A., Perdrial, J., Harpold, A., Zapata-Ríos, X., Rasmussen, C., McIntosh, J., et al. (2015). Rare earth elements as reactive tracers of biogeochemical weathering in forested rhyolitic terrain. Chemical Geology, 391, 19–32.

    Google Scholar 

  • WHO (World Health Organization). (2004). Guidelines for drinking water quality: Training pack. Geneva: WHO.

    Google Scholar 

  • Wirmvem, M. J., Mimba, M. E., Kamtchueng, B. T., Wotany, E. R., Bafon, T. G., Asaah, A. N. E., et al. (2015). Shallow groundwater recharge mechanism and apparent age in the Ndop plain, northwest Cameroon. Applied Water Sciences. https://doi.org/10.1007/s13201-015-0268-0.

    Article  Google Scholar 

  • Zaborski, P., Ugodunlunwa, F., Idornigie, A., Nnabo, P., & Ibe, K. (1997). Stratigraphy and structure of the Cretaceous Gongola Basin ‘N.E. Nigeria. Bulletin des Centres de Recherches Exploitation-Production Elf-Aquitaine, 21(1), 153–177.

    Google Scholar 

  • Zhuravlev, A., Berto, M., Arabadzhi, M., Gabrieli, J., Turreta, C., Cozz, G. M., et al. (2016). Trace and rare earth elements in natural ground waters: Weathering effect of water-rock interaction. International Journal of Environmental Research, 10(4), 561–574.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Federal Ministry for Economic Cooperation and Development (BMZ)—Germany as BMZ No. 2014.2472.0, through the PRESS NO-SW project in Cameroon that was implemented by the Federal Institute of Geoscience and Natural Resources (BGR)—Germany as BGR No. 05-2388, and the Institute of Geological and Mining Research (IRGM), Yaoundé.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilson Y. Fantong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fantong, W.Y., Jokam Nenkam, T.L.L., Nbendah, P. et al. Compositions and mobility of major, δD, δ18O, trace, and REEs patterns in water sources at Benue River Basin—Cameroon: implications for recharge mechanisms, geo-environmental controls, and public health. Environ Geochem Health 42, 2975–3013 (2020). https://doi.org/10.1007/s10653-020-00539-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00539-w

Keywords

Navigation