Skip to main content

Advertisement

Log in

Application of vitamin-producing lactic acid bacteria to treat intestinal inflammatory diseases

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recent studies have shown that inflammatory diseases are becoming more frequent throughout the world. The causes of these disorders are multifactorial and include genetic, immunological, and environmental factors, and intestinal microbiota dysbiosis. The use of beneficial microorganisms has shown to be useful in the prevention and treatment of disorders such as colitis, mucositis, and even colon cancer by their immune-stimulating properties. It has also been shown that certain vitamins, especially riboflavin and folate derivatives, have proven to be helpful in the treatment of these diseases. The application of vitamin-producing lactic acid bacteria, especially strains that produce folate and riboflavin together with immune-stimulating strains, could be used as adjunct treatments in patients suffering from a wide range of inflammatory diseases since they could improve treatment efficiency and prevent undesirable side effects in addition to their nutrition values. In this review, the most up to date information on the current knowledge and uses of vitamin-producing lactic acid bacteria is discussed in order to stimulate further studies in this field.

Key Points

• Probiotic lactic acid bacteria possess anti-inflammatory properties

• Vitamin-producing strains can reduce intestinal inflammation

• Probiotic blends can complement anti-inflammatory treatments

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alam MM, Iqbal S, Naseem I (2015) Ameliorative effect of riboflavin on hyperglycemia, oxidative stress and DNA damage in type-2 diabetic mice: mechanistic and therapeutic strategies. Arc Biochem Bioph 584:10–19

    Article  CAS  Google Scholar 

  • Albuquerque MAC, Bedani R, LeBlanc JG, Saad SMI (2017) Passion fruit by-product and fructooligosaccharides stimulate the growth and folate production by starter and probiotic cultures in fermented soymilk. Int J Food Microbiol 261:35–41

    Article  CAS  PubMed  Google Scholar 

  • Al-Harbi NO, Imam F, Nadeem A, Al-Harbi MM, Iqbal M, Ahmad SF (2014) Carbon tetrachloride-induced hepatotoxicity in rat is reversed by treatment with riboflavin. Int Immunopharmacol 21(2):383–388. https://doi.org/10.1016/j.intimp.2014.05.014

    Article  CAS  PubMed  Google Scholar 

  • Baszczuk A, Thielemann A, Musialik K, Kopczynski J, Bielawska L, Dzumak A, Kopczynski Z, Wysocka E (2017) The impact of supplementation with folic acid on homocysteine concentration and selected lipoprotein parameters in patients with primary hypertension. J Nutr Sci Vitaminol (Tokyo) 63(2):96–103. https://doi.org/10.3177/jnsv.63.96

    Article  Google Scholar 

  • Burr NE, Hull MA, Subramanian V (2017) Folic acid supplementation may reduce colorectal cancer risk in patients with inflammatory bowel disease: a systematic review and meta-analysis. J Clin Gastroenterol 51(3):247–253. https://doi.org/10.1097/mcg.0000000000000498

    Article  CAS  PubMed  Google Scholar 

  • Caballero-Franco C, Keller K, De Simone C, Chadee K (2007) The VSL# 3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am J Physiol-Gastrointest Liver Physiol 292(1):G315–G322

    Article  CAS  PubMed  Google Scholar 

  • Capozzi V, Menga V, Digesu AM, De Vita P, van Sinderen D, Cattivelli L, Fares C, Spano G (2011) Biotechnological production of vitamin B2-enriched bread and pasta. J Agric Food Chem 59(14):8013–8020. https://doi.org/10.1021/jf201519h

    Article  CAS  PubMed  Google Scholar 

  • Cardenas N, Laino JE, Delgado S, Jimenez E, Juarez del Valle M, Savoy de Giori G, Sesma F, Mayo B, Fernandez L, LeBlanc JG, Rodriguez JM (2015) Relationships between the genome and some phenotypical properties of Lactobacillus fermentum CECT 5716, a probiotic strain isolated from human milk. Appl Microbiol Biotechnol 99(10):4343–4353. https://doi.org/10.1007/s00253-015-6429-0

    Article  CAS  PubMed  Google Scholar 

  • Carrizo LS, Montes de Oca C, Laiño JE, Suarez NE, Vignolo G, LeBlanc JG, Rollan G (2016) Ancestral Andean grain quinoa as a source of functional lactic acid bacteria. Food Res Int 89:488–494

    Article  CAS  PubMed  Google Scholar 

  • Carrizo SL, Montes de Oca CE, Hebert ME, Saavedra L, Vignolo G, LeBlanc JG, Rollan GC (2017) Lactic acid bacteria from Andean Grain Amaranth: a source of vitamins and functional value enzymes. J Mol Microbiol Biotechnol 27(5):289–298. https://doi.org/10.1159/000480542

    Article  CAS  PubMed  Google Scholar 

  • Carrizo SL, de Moreno de LeBlanc A, LeBlanc JG, Rollan GC (2020) Quinoa pasta fermented with lactic acid bacteria prevents nutritional deficiencies in mice. Food Res Int 127:108735. https://doi.org/10.1016/j.foodres.2019.108735

    Article  CAS  PubMed  Google Scholar 

  • Carvalho RD, Breyner N, Menezes-Garcia Z, Rodrigues NM, Lemos L, Maioli TU, Souza DG, Carmona D, Faria AMC, Langella P (2017) Secretion of biologically active pancreatitis-associated protein I (PAP) by genetically modified dairy Lactococcus lactis NZ9000 in the prevention of intestinal mucositis. Microbial Cell Fact 16(1):27

    Article  CAS  Google Scholar 

  • Cereda E, Caraccia M, Caccialanza R (2018) Probiotics and mucositis. Cur Op Clinl Nutr Met Care 21(5):399–404. https://doi.org/10.1097/mco.0000000000000487

    Article  Google Scholar 

  • Chen Y, Friedman M, Liu G, Deodhar A, Chu CQ (2018) Do tumor necrosis factor inhibitors increase cancer risk in patients with chronic immune-mediated inflammatory disorders? Cytokine 101:78–88. https://doi.org/10.1016/j.cyto.2016.09.013

    Article  CAS  PubMed  Google Scholar 

  • Choi E-J, Lee HJ, Kim W-J, Han K-I, Iwasa M, Kobayashi K, Debnath T, Tang Y, Kwak Y-S, Yoon J-H (2019) Enterococcus faecalis EF-2001 protects DNBS-induced inflammatory bowel disease in mice model. PLoS One 14(2):e0210854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collaborators GIBD (2020) The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 5(1):17–30. https://doi.org/10.1016/s2468-1253(19)30333-4

    Article  Google Scholar 

  • Da Silva FFP, Biscola V, LeBlanc JG, de Melo Franco BDG (2016) Effect of indigenous lactic acid bacteria isolated from goat milk and cheeses on folate and riboflavin content of fermented goat milk. LWT-Food Sci Technol 71:155–161

    Article  CAS  Google Scholar 

  • de Melo Pereira GV, de Oliveira CB, Júnior AIM, Thomaz-Soccol V, Soccol CR (2018) How to select a probiotic? A review and update of methods and criteria. Biotechnol Adv 36:2060–2076. https://doi.org/10.1016/j.biotechadv.2018.09.003

    Article  PubMed  Google Scholar 

  • de Moreno de LeBlanc A, Levit R, Savoy de Giori G, LeBlanc JG (2018) Vitamin producing lactic acid bacteria as complementary treatments for intestinal inflammation. Anti-Inflam Anti-Allergy Agents Med Chem 17(1):50–56. https://doi.org/10.2174/1871523017666180502170659

    Article  CAS  Google Scholar 

  • Dehkordi EH, Sattari F, Khoshdel A, Kasiri K (2016) Effect of folic acid and metformin on insulin resistance and inflammatory factors of obese children and adolescents. J Res Medical Sci 21:71. https://doi.org/10.4103/1735-1995.189669

    Article  CAS  Google Scholar 

  • del Carmen S, de LeBlanc AM, Martin R, Chain F, Langella P, Bermúdez-Humarán LG, LeBlanc JG (2014) Genetically engineered immunomodulatory Streptococcus thermophilus strains producing antioxidant enzymes exhibit enhanced anti-inflammatory activities. Appl Environ Microbiol 80(3):869–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Valle MJ, Laiño J, de Giori GS, LeBlanc J (2014) Riboflavin producing lactic acid bacteria as a biotechnological strategy to obtain bio-enriched soymilk. Food Res Int 62:1015–1019

    Article  CAS  Google Scholar 

  • dos Santos TF, Melo TA, Santos DS, Rezende RP, Dias JCT, Romano CC (2016) Efficacy of oral administration of lactic acid bacteria isolated from cocoa in a fermented milk preparation: reduction of colitis in an experimental rat model. Gen Mol Res 15(3). https://doi.org/10.4238/gmr.15038097

  • Ewe J-A, Wan-Abdullah W-N, Liong M-T (2010) Viability and growth characteristics of Lactobacillus in soymilk supplemented with B-vitamins. Int JFood Sci Nutr 61(1):87–107

    Article  CAS  Google Scholar 

  • FAO/WHO (2002) Guidelines for the evaluation of probiotics in food: report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. London, Ontario, Canada

  • Ferreira dos Santos T, Alves Melo T, Almeida ME, Passos Rezende R, Romano CC (2016) Immunomodulatory effects of Lactobacillus plantarum Lp62 on intestinal epithelial and mononuclear cells. Biomed Res Int 2016:8404156. https://doi.org/10.1155/2016/8404156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gangadharan D, Nampoothiri KM (2011) Folate production using Lactococcus lactis ssp. cremoris with implications for fortification of skim milk and fruit juices. LWT-Food Sci Technol 44(9):1859–1864

    Article  CAS  Google Scholar 

  • Iwanaga K, Hasegawa T, Hultquist DE, Harada H, Yoshikawa Y, Yanamadala S, Liao H, Visovatti SH, Pinsky DJ (2007) Riboflavin-mediated reduction of oxidant injury, rejection, and vasculopathy after cardiac allotransplantation. Transplantation 83(6):747–753

    Article  CAS  PubMed  Google Scholar 

  • Jiménez E, Yépez A, Pérez-Cataluña A, Vásquez ER, Dávila DZ, Vignolo G, Aznar R (2018) Exploring diversity and biotechnological potential of lactic acid bacteria from tocosh-traditional Peruvian fermented potatoes-by high throughput sequencing (HTS) and culturing. LWT-Food Sci Technol 87:567–574

    Article  CAS  Google Scholar 

  • Juarez del Valle M, Laiño JE, Savoy de Giori G, LeBlanc JG (2017) Factors stimulating riboflavin produced by Lactobacillus plantarum CRL 725 grown in a semi-defined medium. J Basic Microbiol 57(3):245–252

    Article  CAS  PubMed  Google Scholar 

  • Justino PF, Melo LF, Nogueira AF, Costa JV, Silva LM, Santos CM, Mendes WO, Costa MR, Franco AX, Lima AA, Ribeiro RA, Souza MH, Soares PM (2014) Treatment with Saccharomyces boulardii reduces the inflammation and dysfunction of the gastrointestinal tract in 5-fluorouracil-induced intestinal mucositis in mice. Br J Nutr 111(9):1611–1621. https://doi.org/10.1017/s0007114513004248

    Article  CAS  PubMed  Google Scholar 

  • Kariluoto S, Edelmann M, Herranen M, Lampi A-M, Shmelev A, Salovaara H, Korhola M, Piironen V (2010) Production of folate by bacteria isolated from oat bran. Int J Food Microbiol 143(1):41–47

    Article  CAS  PubMed  Google Scholar 

  • Kariluoto S, Edelmann M, Nystrom L, Sontag-Strohm T, Salovaara H, Kivela R, Herranen M, Korhola M, Piironen V (2014) In situ enrichment of folate by microorganisms in beta-glucan rich oat and barley matrices. Int J Food Microbiol 176:38–48

    Article  CAS  PubMed  Google Scholar 

  • Laino JE, LeBlanc JG, Savoy de Giori G (2012) Production of natural folates by lactic acid bacteria starter cultures isolated from artisanal Argentinean yogurts. Can J Microbiol 58(5):581–588. https://doi.org/10.1139/w2012-026

    Article  CAS  PubMed  Google Scholar 

  • Laiño JE, Juarez del Valle M, Savoy de Giori G, LeBlanc JG (2013) Development of a high folate concentration yogurt naturally bio-enriched using selected lactic acid bacteria. LWT-Food Sci Technol 54(1):1–5

    Article  CAS  Google Scholar 

  • LeBlanc JG, de Moreno de LeBlanc A (2013) Crohn’s disease: classification, diagnosis and treatment options. Nova Science Publishers, Inc., Hauppauge

  • LeBlanc JG, de Moreno de LeBlanc A (2015) Probiotics in inflammatory bowel diseases and cancer prevention. In: Watson RR, Preedy VR (eds) Bioactive foods in promoting health: probiotics, prebiotics, and synbiotics, 2nd edn. Academic Press (Elsevier), Oxford, pp 755–771

    Google Scholar 

  • LeBlanc JG, de Moreno de LeBlanc A (2019) The many benefits of lactic acid bacteria. Nova Science Publishers, Inc, Hauppauge ISBN 978-1-53615-388-0

    Google Scholar 

  • LeBlanc JG, Burgess C, Sesma F, de Giori GS, van Sinderen D (2005) Lactococcus lactis is capable of improving the riboflavin status in deficient rats. Brit J Nutr 94(2):262–267

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc JG, Rutten G, Bruinenberg P, Sesma F, de Giori GS, Smid EJ (2006) A novel dairy product fermented with Propionibacterium freudenreichii improves the riboflavin status of deficient rats. Nutr 22(6):645–651

    Article  CAS  Google Scholar 

  • LeBlanc JG, Laiño JE, del Valle MJ, Vannini V, van Sinderen D, Taranto MP, de Valdez GF, de Giori GS, Sesma F (2011) B-group vitamin production by lactic acid bacteria-current knowledge and potential applications. J Appl Microbiol 111(6):1297–1309. https://doi.org/10.1111/j.1365-2672.2011.05157.x

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24(2):160–168. https://doi.org/10.1016/j.copbio.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc JG, Laiño JE, Juarez del Valle M, Savoy de Giori G, Sesma F, Taranto MP (2015) B-group vitamins production by probiotic lactic acid bacteria. In: Mozzi F, Raya RR, Vignolo GM (eds) Biotechnology of lactic acid Bacteria: novel applications, Second edn. Wiley Blackwell, Ames, pp 279–296

    Chapter  Google Scholar 

  • LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S, Langella P (2017) Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Factories 16(1):79. https://doi.org/10.1186/s12934-017-0691-z

    Article  CAS  Google Scholar 

  • Levit R, Savoy de Giori G, de Moreno de LeBlanc A, LeBlanc JG (2017a) Effect of riboflavin-producing bacteria against chemically induced colitis in mice. J Appl Microbiol 124(1):232–240. https://doi.org/10.1111/jam.13622

    Article  CAS  PubMed  Google Scholar 

  • Levit R, Savoy de Giori G, de Moreno de LeBlanc A, LeBlanc JG (2017b) Evaluation of the effect of soymilk fermented by a riboflavin-producing Lactobacillus plantarum strain in a murine model of colitis. Ben Microbes 8(1):65–72

    Article  CAS  Google Scholar 

  • Levit R, Savoy de Giori G, de Moreno de LeBlanc A, LeBlanc JG (2018a) Folate-producing lactic acid bacteria reduce inflammation in mice with induced intestinal mucositis. J Appl Microbiol 125(5):1494–1501

    Article  CAS  PubMed  Google Scholar 

  • Levit R, Savoy de Giori G, de Moreno de LeBlanc A, LeBlanc JG (2018b) Protective effect of the riboflavin-overproducing strain Lactobacillus plantarum CRL2130 on intestinal mucositis in mice. Nutrition 54:165–172

    Article  CAS  PubMed  Google Scholar 

  • Levit R, Savoy de Giori G, de Moreno de LeBlanc A, LeBlanc JG (2019) Beneficial effect of a mixture of vitamin-producing and immune-modulating lactic acid bacteria as adjuvant for therapy in a recurrent mouse colitis model. Appl Microbiol Biotechnol 103:8937–8945. https://doi.org/10.1007/s00253-019-10133-5

    Article  CAS  PubMed  Google Scholar 

  • Madsen KL, Doyle JS, Jewell LD, Tavernini MM, Fedorak RN (1999) Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterol 116:1107–1114

    Article  CAS  Google Scholar 

  • Mazur-Bialy AI, Pochec E, Plytycz B (2015) Immunomodulatory effect of riboflavin deficiency and enrichment-reversible pathological response versus silencing of inflammatory activation. J Physiol Pharmacol 66(6):793–802

    CAS  PubMed  Google Scholar 

  • Mohedano ML, Hernandez-Recio S, Yepez A, Requena T, Martinez-Cuesta MC, Pelaez C, Russo P, LeBlanc JG, Spano G, Aznar R, Lopez P (2019) Real-time detection of riboflavin production by Lactobacillus plantarum strains and tracking of their gastrointestinal survival and functionality in vitro and in vivo using mCherry labeling. Frontiers Microbiol 10:1748. https://doi.org/10.3389/fmicb.2019.01748

    Article  Google Scholar 

  • Mosso AL, Jimenez ME, Vignolo G, LeBlanc JG, Samman NC (2018) Increasing the folate content of tuber based foods using potentially probiotic lactic acid bacteria. Food Res Int 109:168–174

    Article  CAS  PubMed  Google Scholar 

  • Moura FA, de Andrade KQ, Dos Santos JC, Araujo OR, Goulart MO (2015) Antioxidant therapy for treatment of inflammatory bowel disease: does it work? Redox Biol 6:617–639. https://doi.org/10.1016/j.redox.2015.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng SC, Lam EF, Lam TT, Chan Y, Law W, Tse PC, Kamm MA, Sung JJ, Chan FK, Wu JC (2013) Effect of probiotic bacteria on the intestinal microbiota in irritable bowel syndrome. J Gastroenterol Hepatol 28(10):1624–1631. https://doi.org/10.1111/jgh.12306

    Article  PubMed  Google Scholar 

  • O’Mahony L, McCarthy J, Kelly P, Hurley G, Luo F, Chen K, O’Sullivan GC, Kiely B, Collins JK, Shanahan F, Quigley EM (2005) Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterol 128(3):541–551

    Article  Google Scholar 

  • Oh NS, Lee JY, Lee JM, Lee KW, Kim Y (2017) Mulberry leaf extract fermented with Lactobacillus acidophilus A4 ameliorates 5-fluorouracil-induced intestinal mucositis in rats. Lett Appl Microbiol 64(6):459–468. https://doi.org/10.1111/lam.12741

    Article  CAS  PubMed  Google Scholar 

  • Ohland CL, MacNaughton WK (2009) Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol-Gastrointest Liver Physiol 298(6):G807–G819

    Article  CAS  Google Scholar 

  • Pan Y, Liu Y, Guo H, Jabir MS, Liu X, Cui W, Li D (2017) Associations between folate and vitamin B12 levels and inflammatory bowel disease: a meta-analysis. Nutrients 9(4). https://doi.org/10.3390/nu9040382

  • Powers HJ (2003) Riboflavin (vitamin B-2) and health. Am J Clin Nutr 77(6):1352–1360

    Article  CAS  PubMed  Google Scholar 

  • Prisciandaro LD, Geier MS, Chua AE, Butler RN, Cummins AG, Sander GR, Howarth GS (2012) Probiotic factors partially prevent changes to caspases 3 and 7 activation and transepithelial electrical resistance in a model of 5-fluorouracil-induced epithelial cell damage. Supportive Care Cancer 20(12):3205–3210. https://doi.org/10.1007/s00520-012-1446-3

    Article  Google Scholar 

  • Rohani M, Noohi N, Talebi M, Katouli M, Pourshafie MR (2015) Highly heterogeneous probiotic Lactobacillus species in healthy Iranians with low functional activities. PLoS One 10(12):e0144467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rollan GC, Gerez CL, LeBlanc JG (2019) Lactic fermentation as a strategy to improve the nutritional and functional values of pseudocereals. Frontiers Nutri 6:98

    Article  Google Scholar 

  • Rossi M, Amaretti A, Raimondi S (2011) Folate production by probiotic bacteria. Nutrients 3(1):118–134. https://doi.org/10.3390/nu3010118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo P, Capozzi V, Arena MP, Spadaccino G, Duenas MT, Lopez P, Fiocco D, Spano G (2014a) Riboflavin-overproducing strains of Lactobacillus fermentum for riboflavin-enriched bread. Appl Microbiol Biotechnol 98(8):3691–3700. https://doi.org/10.1007/s00253-013-5484-7

    Article  CAS  PubMed  Google Scholar 

  • Russo P, Valeria de Chiara ML, Vernile A, Amodio ML, Arena MP, Capozzi V, Massa S, Spano G (2014b) Fresh-cut pineapple as a new carrier of probiotic lactic acid Bacteria. Biomed Res Int. https://doi.org/10.1155/2014/309183

  • Russo P, Peña N, Valeria de Chiara ML, Amodio ML, Colleli G, Spano G (2015) Probiotic lactic acid bacteria for the production of multifunctional fresh-cut cantaloupe. Food Res Int 77(4):762–772

    Article  CAS  Google Scholar 

  • Russo P, de Chiara MLV, Capozzi V, Arena MP, Amodio ML, Rascón A, Dueñas MT, López P, Spano G (2016) Lactobacillus plantarum strains for multifunctional oat-based foods. LWT-Food Sci Technol 68:288–294

    Article  CAS  Google Scholar 

  • Salvucci E, LeBlanc JG, Pérez G (2016) Technological properties of lactic acid bacteria isolated from raw cereal material. LWT-Food Sci Technol 70:185–191

    Article  CAS  Google Scholar 

  • Shadnoush M, Shaker Hosseini R, Mehrabi Y, Delpisheh A, Alipoor E, Faghfoori Z, Mohammadpour N, Zaringhalam Moghadam J (2013) Probiotic yogurt affects pro-and anti-inflammatory factors in patients with inflammatory bowel disease. Iranian J Pharmaceut Res 12(4):929–936

    Google Scholar 

  • Tang Y, Wu Y, Huang Z, Dong W, Deng Y, Wang F, Li M, Yuan J (2017) Administration of probiotic mixture DM# 1 ameliorated 5-fluorouracil- induced intestinal mucositis and dysbiosis in rats. Nutrition 33:96–104

    Article  CAS  PubMed  Google Scholar 

  • Thakur K, Lule VK, Rajni CS, Kumar N, Mandal S, Anand S, Kumari V, Tomar SK (2016) Riboflavin producing probiotic lactobacilli as a biotechnological strategy to obtain riboflavin-enriched fermented foods. J Pure Appl Microbiol 10:161–166

    CAS  Google Scholar 

  • Thomas CM, Saulnier DM, Spinler JK, Hemarajata P, Gao C, Jones SE, Grimm A, Balderas MA, Burstein MD, Morra C, Roeth D, Kalkum M, Versalovic J (2016) FolC2-mediated folate metabolism contributes to suppression of inflammation by probiotic Lactobacillus reuteri. MicrobiologyOpen 5(5):802–818. https://doi.org/10.1002/mbo3.371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trindade LM, Martins VD, Rodrigues NM, Souza ELS, Martins FS, Costa GMF, Almeida-Leite CM, Faria AMC, Cardoso VN, Maioli TU (2018) Oral administration of Simbioflora®(synbiotic) attenuates intestinal damage in a mouse model of 5-fluorouracil-induced mucositis. Ben Microbes 9(3):477–486

    Article  CAS  Google Scholar 

  • Weber C (2015) IBD: Lactococcus lactis alleviates oxidative stress and colitis in mice. Nature Rev Gastroenterol Hepatol 12(8):429. https://doi.org/10.1038/nrgastro.2015.109

    Article  Google Scholar 

  • Yepéz A, Russo P, Spano G, Khomenko I, Biasioli F, Capozzi V, Aznar R (2019) In situ riboflavin fortification of different kefir-like cereal-based beverages using selected Andean LAB strains. Food Microbiol 77:61–68

    Article  CAS  PubMed  Google Scholar 

  • Yeung CY, Chiang Chiau JS, Chan WT, Jiang CB, Cheng ML, Liu HL, Lee HC (2013) In vitro prevention of salmonella lipopolysaccharide-induced damages in epithelial barrier function by various lactobacillus strains. Gastroenterol Res Pract 2013:973209. https://doi.org/10.1155/2013/973209

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokota Y, Shikano A, Kuda T, Takei M, Takahashi H, Kimura B (2018) Lactobacillus plantarum AN1 cells increase caecal L. reuteri in an ICR mouse model of dextran sodium sulphate-induced inflammatory bowel disease. Int Immunopharmacol 56:119–127. https://doi.org/10.1016/j.intimp.2018.01.020

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhao X, Zhu Y, Ma J, Ma H, Zhang H (2018) Probiotic mixture protects dextran sulfate sodium-induced colitis by altering tight junction protein expressions and increasing Tregs. Mediators of Inflammation 2018:9416391. https://doi.org/10.1155/2018/9416391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas projects PIP 0697), the ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica projects 0301 and 2554), and the Ibero-American Program of Science and Technology for the Development (CYTED, Strategic Project Ref: 917PTE0537).

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the manuscript, made critical revisions of the manuscript, and approved the final version of the manuscript.

Corresponding authors

Correspondence to Jean Guy LeBlanc or Alejandra de Moreno de LeBlanc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

None required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LeBlanc, J.G., Levit, R., Savoy de Giori, G. et al. Application of vitamin-producing lactic acid bacteria to treat intestinal inflammatory diseases. Appl Microbiol Biotechnol 104, 3331–3337 (2020). https://doi.org/10.1007/s00253-020-10487-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10487-1

Keywords

Navigation