Skip to main content
Log in

Mass spectrometric investigation of concentration-dependent effect of curcumin and oxidative stress on intracellular glutathione levels

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Herein, we investigated the correlation between curcumin and glutathione (GSH) levels in mammalian cells using gold nanoparticles (AuNPs) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). GSH exists in high concentration in the cytosol and acts as a major antioxidant and reducing agent in organisms. Previous studies showed that curcumin, a well-known antioxidant with anti-inflammatory, anti-proliferative, and anti-carcinogenic activities, affects GSH levels in mammalian cells. However, the correlation between their levels remains controversial and has not yet been completely elucidated. This study used our recent strategy of GSH quantification, where GSH in cell lysate is captured on maleimide groups of AuNPs and analyzed using MALDI-TOF MS with isotopomer GSH (GSH*)–conjugated AuNPs as an internal standard. The comparison between GSH and GSH* relative intensities allows the quantitation of GSH in cells. In this way, GSH levels in mammalian cells were investigated after incubation with curcumin at various concentrations with or without oxidative stress. We observed that intracellular GSH levels were affected by curcumin in a concentration-dependent manner with oxidative stress; GSH levels decrease at a lower curcumin concentration, which can be recovered at increased curcumin concentrations. We also found that the GSH level increased at all curcumin concentrations after a certain incubation time. We believe our strategy can be commonly used to determine GSH levels in cells that are treated differently with various exogenous stimulants like reactive oxygen species, biofunctional natural products, and drug candidates.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kosower NS, Kosower EM. The glutathione status of cells. Int Rev Cytol. 1978;54:109–60.

    Article  CAS  Google Scholar 

  2. Anderson ME. Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact. 1998;111:1–14.

    Article  Google Scholar 

  3. Lu SC. Glutathione synthesis. Biochim Biophys Acta. 1830;2013:3143–53.

    Google Scholar 

  4. Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Asp Med. 2009;30:1–12.

    Article  CAS  Google Scholar 

  5. Bains JS, Shaw CA. Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Brain Res Rev. 1997;25:335–58.

    Article  CAS  Google Scholar 

  6. Aoyama K, Nakaki T. Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci. 2013;14:21021–44.

    Article  CAS  Google Scholar 

  7. Anandan R, Ganesan B, Obulesu T, Mathew S, Asha K, Lakshmanan P, et al. Antiaging effect of dietary chitosan supplementation on glutathione-dependent antioxidant system in young and aged rats. Cell Stress Chaperones. 2013;18:121–5.

    Article  CAS  Google Scholar 

  8. Furukawa T, Meydani SN, Blumberg JB. Reversal of age-associated decline in immune responsiveness by dietary glutathione supplementation in mice. Mech Ageing Dev. 1987;38:107–17.

    Article  CAS  Google Scholar 

  9. Balendiran GK, Dabur R, Fraser D. The role of glutathione in cancer. Cell Biochem Funct. 2004;22:343–52.

    Article  CAS  Google Scholar 

  10. Roum J, Buhl R, McElvaney N, Borok Z, Crystal R. Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol. 1993;75:2419–24.

    Article  CAS  Google Scholar 

  11. Hudson VM. Rethinking cystic fibrosis pathology: the critical role of abnormal reduced glutathione (GSH) transport caused by CFTR mutation. Free Radic Biol Med. 2001;30:1440–61.

    Article  CAS  Google Scholar 

  12. Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol. 2007;595:105–25.

    Article  Google Scholar 

  13. Park J, Conteas CN. Anti-carcinogenic properties of curcumin on colorectal cancer. World J Gastrointest Oncol. 2010;2:169.

    Article  Google Scholar 

  14. Das L, Vinayak M. Anti-carcinogenic action of curcumin by activation of antioxidant defence system and inhibition of NF-κB signalling in lymphoma-bearing mice. Biosci Rep. 2012;32:161–70.

    Article  CAS  Google Scholar 

  15. Huang MT, Newmark HL, Frenkel K. Inhibitory effects of curcumin on tumorigenesis in mice. J Cell Biochem. 1997;67:26–34.

    Article  Google Scholar 

  16. Edwards RL, Luis PB, Varuzza PV, Joseph AI, Presley SH, Chaturvedi R, et al. The anti-inflammatory activity of curcumin is mediated by its oxidative metabolites. J Biol Chem. 2017;292:21243–52.

    Article  CAS  Google Scholar 

  17. Abusnina A, Keravis T, Yougbaré I, Bronner C, Lugnier C. Anti-proliferative effect of curcumin on melanoma cells is mediated by PDE1A inhibition that regulates the epigenetic integrator UHRF1. Mol Nutr Food Res. 2011;55:1677–89.

    Article  CAS  Google Scholar 

  18. Panchal HD, Vranizan K, Lee CY, Ho J, Ngai J, Timiras PS. Early anti-oxidative and anti-proliferative curcumin effects on neuroglioma cells suggest therapeutic targets. Neurochem Res. 2008;33:1701–10.

    Article  CAS  Google Scholar 

  19. Masuda T, Hidaka K, Shinohara A, Maekawa T, Takeda Y, Yamaguchi H. Chemical studies on antioxidant mechanism of curcuminoid: analysis of radical reaction products from curcumin. J Agric Food Chem. 1999;47:71–7.

    Article  CAS  Google Scholar 

  20. Jayaprakasha G, Rao LJ, Sakariah K. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem. 2006;98:720–4.

    Article  CAS  Google Scholar 

  21. Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S. Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and-independent apoptosis in L929 cells. Free Radic Biol Med. 2008;45:1403–12.

    Article  CAS  Google Scholar 

  22. Kizhakkayil J, Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S. Glutathione regulates caspase-dependent ceramide production and curcumin-induced apoptosis in human leukemic cells. Free Radic Biol Med. 2012;52:1854–64.

    Article  CAS  Google Scholar 

  23. Labbozzetta M, Baruchello R, Marchetti P, Gueli MC, Poma P, Notarbartolo M, et al. Lack of nucleophilic addition in the isoxazole and pyrazole diketone modified analogs of curcumin; implications for their antitumor and chemosensitizing activities. Chem Biol Interact. 2009;181:29–36.

    Article  CAS  Google Scholar 

  24. Awasthi S, Pandya U, Singhal SS, Lin JT, Thiviyanathan V, Seifert WE Jr, et al. Curcumin–glutathione interactions and the role of human glutathione S-transferase P1-1. Chem Biol Interact. 2000;128:19–38.

    Article  CAS  Google Scholar 

  25. Usta M, Wortelboer HM, Vervoort J, Boersma MG, Rietjens IM, van Bladeren PJ, et al. Human glutathione S-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in Caco-2 cells. Chem Res Toxicol. 2007;20:1895–902.

    Article  CAS  Google Scholar 

  26. Borra SK, Mahendra J, Gurumurthy P. Effect of curcumin against oxidation of biomolecules by hydroxyl radicals. J Clin Diagn Res. 2014;8:CC01.

    PubMed  PubMed Central  Google Scholar 

  27. Singhal SS, Awasthi S, Pandya U, Piper JT, Saini MK, Cheng J-Z, et al. The effect of curcumin on glutathione-linked enzymes in K562 human leukemia cells. Toxicol Lett. 1999;109:87–95.

    Article  CAS  Google Scholar 

  28. Zheng S, Yumei F, Chen A. De novo synthesis of glutathione is a prerequisite for curcumin to inhibit hepatic stellate cell (HSC) activation. Free Radic Biol Med. 2007;43:444–53.

    Article  CAS  Google Scholar 

  29. Oh H, Lee J, Yeo W-S. Selective extraction and quantification of glutathione using maleimide-presenting gold nanoparticles. Bull Kor Chem Soc. 2014;35:3047–51.

    Article  CAS  Google Scholar 

  30. Lee J, Ryoo S-R, Kim SK, Ahn J-H, Min D-H, Yeo W-S. Quantitation of surface-bound proteins on biochips using MALDI-TOF MS. Anal Sci. 2011;27:1127–31.

    Article  CAS  Google Scholar 

  31. Ju S, Yeo W-S. Quantification of proteins on gold nanoparticles by combining MALDI-TOF MS and proteolysis. Nanotechnology. 2012;23:135701.

    Article  CAS  Google Scholar 

  32. Hong S-H, Ji Kim M, Ahn J-H, Yeo W-S. Multiplexed quantification of surface-bound proteins on gold nanoparticles. Anal Methods. 2013;5:3816–8.

    Article  CAS  Google Scholar 

  33. Houseman BT, Gawalt ES, Mrksich M. Maleimide-functionalized self-assembled monolayers for the preparation of peptide and carbohydrate biochips. Langmuir. 2003;19:1522–31.

    Article  CAS  Google Scholar 

  34. Schwartzberg AM, Olson TY, Talley CE, Zhang JZ. Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. J Phys Chem B. 2006;110:19935–44.

    Article  CAS  Google Scholar 

  35. Li M, Mao S, Wang S, Li H-F, Lin J-M. Chip-based SALDI-MS for rapid determination of intracellular ratios of glutathione to glutathione disulfide. Sci China Chem. 2019;62:142–50.

    Article  CAS  Google Scholar 

  36. Chen Z, Sun Q, Yao Y, Fan X, Zhang W, Qian J. Highly sensitive detection of cysteine over glutathione and homo-cysteine: new insight into the Michael addition of mercapto group to maleimide. Biosens Bioelectron. 2017;91:553–9.

    Article  CAS  Google Scholar 

  37. Huang Y-F, Chang H-T. Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry. Anal Chem. 2007;79:4852–9.

    Article  CAS  Google Scholar 

  38. Luis PB, Boeglin WE, Schneider C. Thiol reactivity of curcumin and its oxidation products. Chem Res Toxicol. 2018;31:269–76.

    Article  CAS  Google Scholar 

  39. Gieche J, Mehlhase J, Licht A, Zacke T, Sitte N, Grune T. Protein oxidation and proteolysis in RAW264.7 macrophages: effects of PMA activation. Biochim Biophys Acta, Mol Cell Res. 2001;1538:321–8.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education (NRF-2019R1F1A1A1054924) and by Konkuk University Researcher Fund in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woon-Seok Yeo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

The authors declare that no human participants and/or animals were involved in this research.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, GY., Kim, E., Kang, H. et al. Mass spectrometric investigation of concentration-dependent effect of curcumin and oxidative stress on intracellular glutathione levels. Anal Bioanal Chem 412, 2873–2880 (2020). https://doi.org/10.1007/s00216-020-02524-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02524-9

Keywords

Navigation