Skip to main content

Advertisement

Log in

PKCγ interneurons, a gateway to pathological pain in the dorsal horn

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Chronic pain is a frequent and disabling condition that is significantly maintained by central sensitization, which results in pathological amplification of responses to noxious and innocuous stimuli. As such, mechanical allodynia, or pain in response to a tactile stimulus that does not normally provoke pain, is a cardinal feature of chronic pain. Recent evidence suggests that the dorsal horn excitatory interneurons that express the γ isoform of protein kinase C (PKCγ) play a critical role in the mechanism of mechanical allodynia during chronic pain. Here, we review this evidence as well as the main aspects of the development, anatomy, electrophysiology, inputs, outputs, and pathophysiology of dorsal horn PKCγ neurons. Primary afferent high-threshold neurons transmit the nociceptive message to the dorsal horn of the spinal cord and trigeminal system where it activates second-order nociceptive neurons relaying the information to the brain. In physiological conditions, low-threshold mechanoreceptor inputs activate inhibitory interneurons in the dorsal horn, which may control activation of second-order nociceptive neurons. During chronic pain, low-threshold mechanoreceptor inputs now activate PKCγ neurons that forward the message to second-order nociceptive neurons, turning thus tactile inputs into pain. Several mechanisms may contribute to opening this gate, including disinhibition, activation of local astrocytes, release of diffusible factors such as reactive oxygen species, and alteration of the descending serotoninergic control on PKCγ neurons through 5-HT2A serotonin receptors. Dorsal horn PKCγ neurons, therefore, appear as a relevant therapeutic target to alleviate mechanical allodynia during chronic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abraira VE, Kuehn ED, Chirila AM, Springel MW, Toliver AA, Zimmerman AL, Orefice LL, Boyle KA, Bai L, Song BJ, Bashista KA, O'Neill TG, Zhuo J, Tsan C, Hoynoski J, Rutlin M, Kus L, Niederkofler V, Watanabe M, Dymecki SM, Nelson SB, Heintz N, Hughes DI, Ginty DD (2017) The cellular and synaptic architecture of the mechanosensory dorsal horn. Cell 168(1–2):295 e19–310 e19. https://doi.org/10.1016/j.cell.2016.12.010

    Article  CAS  Google Scholar 

  • Aira Z, Buesa I, García del Caño G, Salgueiro M, Mendiable N, Mingo J, Aguilera L, Bilbao J, Azkue JJ (2012) Selective impairment of spinal mu-opioid receptor mechanism by plasticity of serotonergic facilitation mediated by 5-HT2A and 5-HT2B receptors. Pain 153(7):1418–1425. https://doi.org/10.1016/j.pain.2012.03.017

    Article  CAS  PubMed  Google Scholar 

  • Aira Z, Buesa I, García del Caño G, Bilbao J, Doñate F, Zimmermann M, Azkue JJ (2013) Transient, 5-HT2B receptor-mediated facilitation in neuropathic pain: up-regulation of PKCγ and engagement of the NMDA receptor in dorsal horn neurons. Pain 154(9):1865–1877. https://doi.org/10.1016/j.pain.2013.06.009

    Article  CAS  PubMed  Google Scholar 

  • Alba-Delgado C, El Khoueiry C, Peirs C, Dallel R, Artola A, Antri M (2015) Subpopulations of PKCγ interneurons within the medullary dorsal horn revealed by electrophysiologic and morphologic approach. Pain 156(9):1714–1728. https://doi.org/10.1097/j.pain.0000000000000221

    Article  CAS  PubMed  Google Scholar 

  • Alba-Delgado C, Mountadem S, Mermet-Joret N, Monconduit L, Dallel R, Artola A, Antri M (2018) 5-HT2A Receptor-induced morphological reorganization of PKCγ-expressing interneurons gates inflammatory mechanical allodynia in rat. J Neurosci 38(49):10489–10504. https://doi.org/10.1523/JNEUROSCI.1294-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson WB, Graham BA, Beveridge NJ, Tooney PA, Brichta AM, Callister RJ (2009) Different forms of glycine- and GABA(A)-receptor mediated inhibitory synaptic transmission in mouse superficial and deep dorsal horn neurons. Mol Pain 5:65. https://doi.org/10.1186/1744-8069-5-65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber RP, Vaughn JE, Roberts E (1982) The cytoarchitecture of GABAergic neurons in rat spinal cord. Brain Res 238(2):305–328

    CAS  PubMed  Google Scholar 

  • Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle KA, Gradwell MA, Yasaka T, Dickie AC, Polgar E, Ganley RP, Orr DPH, Watanabe M, Abraira VE, Kuehn ED, Zimmerman AL, Ginty DD, Callister RJ, Graham BA, Hughes DI (2019) Defining a spinal microcircuit that gates myelinated afferent input: implications for tactile allodynia. Cell Rep 28(2):526 e526–540 e526. https://doi.org/10.1016/j.celrep.2019.06.040

    Article  CAS  Google Scholar 

  • Braz J, Solorzano C, Wang X, Basbaum AI (2014) Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control. Neuron 82(3):522–536. https://doi.org/10.1016/j.neuron.2014.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bregman BS (1987) Development of serotonin immunoreactivity in the rat spinal cord and its plasticity after neonatal spinal cord lesions. Brain Res 431:245–263

    CAS  PubMed  Google Scholar 

  • Candelas M, Reynders A, Arango-Lievano M, Neumayer C, Fruquière A, Demes E, Hamid J, Lemmers C, Bernat C, Monteil A, Compan V, Laffray S, Inquimbert P, Le Feuvre Y, Zamponi GW, Moqrich A, Bourinet E, Méry PF (2019) Cav3.2 T-type calcium channels shape electrical firing in mouse Lamina II neurons. Sci Rep 9(1):3112. https://doi.org/10.1038/s41598-019-39703-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZF, Rebelo S, White F, Malmberg AB, Baba H, Lima D, Woolf CJ, Basbaum AI, Anderson DJ (2001) The paired homeodomain protein drg11 is required for the projection of cutaneous sensory afferent fibers to the dorsal spinal cord. Neuron 31:59–73

    CAS  PubMed  Google Scholar 

  • Chen X, Bing F, Dai P, Hong Y (2006) Involvement of protein kinase C in 5-HT-evoked thermal hyperalgesia and spinal fos protein expression in the rat. Pharmacol Biochem Behav 84:8–16

    CAS  PubMed  Google Scholar 

  • Chéry N, de Koninck Y (1999) Junctional versus extrajunctional glycine and GABA(A) receptor-mediated IPSCs in identified lamina I neurons of the adult rat spinal cord. J Neurosci 19(17):7342–7355

    PubMed  PubMed Central  Google Scholar 

  • Chichorro JG, Porreca F, Sessle B (2017) Mechanisms of craniofacial pain. Cephalalgia 37(7):613–626

    PubMed  Google Scholar 

  • Dallel R, Dualé C, Molat JL (1998) Morphine administered in the substantia gelatinosa of the spinal trigeminal nucleus caudalis inhibits nociceptive activities in the spinal trigeminal nucleus oralis. J Neurosci 18(10):3529–3536

    CAS  PubMed  PubMed Central  Google Scholar 

  • DaSilva AF, DosSantos MF (2012) The role of sensory fiber demography in trigeminal and postherpetic neuralgias. J Dent Res 91:17–24. https://doi.org/10.1177/0022034511411300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhandapani R, Arokiaraj CM, Taberner FJ, Pacifico P, Raja S, Nocchi L, Portulano C, Franciosa F, Maffei M, Hussain AF, de Castro RF, Reymond L, Perlas E, Garcovich S, Barth S, Johnsson K, Lechner SG, Heppenstall PA (2018) Control of mechanical pain hypersensitivity in mice through ligand-targeted photoablation of TrkB-positive sensory neurons. Nat Commun 9(1):1640. https://doi.org/10.1038/s41467-018-04049-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-delCastillo M, Woldbye DP, Heegaard AM (2018) Neuropeptide Y and its involvement in chronic pain. Neuroscience 387:162–169. https://doi.org/10.1016/j.neuroscience.2017.08.050

    Article  CAS  PubMed  Google Scholar 

  • Doly S, Madeira A, Fischer J, Brisorgueil MJ, Daval G, Bernard R, Vergé D, Conrath M (2004) The 5-HT2A receptor is widely distributed in the rat spinal cord and mainly localized at the plasma membrane of postsynaptic neurons. J Comp Neurol 472:496–511

    CAS  PubMed  Google Scholar 

  • Duan B, Cheng L, Bourane S, Britz O, Padilla C, Garcia-Campmany L, Krashes M, Knowlton W, Velasquez T, Ren X, Ross S, Lowell BB, Wang Y, Goulding M, Ma Q (2014) Identification of spinal circuits transmitting and gating mechanical pain. Cell 159:1417–1432. https://doi.org/10.1016/j.cell.2014.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fay R, Kubin L (2000) Pontomedullary distribution of 5-HT2A receptor-like protein in the rat. J Comp Neurol 418:323–345

    CAS  PubMed  Google Scholar 

  • Foster E, Wildner H, Tudeau L, Haueter S, Ralvenius WT, Jegen M, Johannssen H, Hösli L, Haenraets K, Ghanem A, Conzelmann KK, Bösl M, Zeilhofer HU (2015) Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch. Neuron 85(6):1289–1304. https://doi.org/10.1016/j.neuron.2015.02.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobel S (1978) Golgi studies of the neurons in layer II of the dorsal horn of the medulla (trigeminal nucleus caudalis). J Comp Neurol 180(2):395–413

    CAS  PubMed  Google Scholar 

  • Grudt TJ, Henderson G (1998) Glycine and GABAA receptor-mediated synaptic transmission in rat substantia gelatinosa: inhibition by mu-opioid and GABAB agonists. J Physiol 507(Pt 2):473–483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grudt TJ, Perl ER (2002) Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J Physiol 540(Pt 1):189–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo A, Vulchanova L, Wang J, Li X, Elde R (1999) Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci 11:946–958

    CAS  PubMed  Google Scholar 

  • Gutierrez-Mecinas M, Furuta T, Watanabe M, Todd AJ (2016) A quantitative study of neurochemically defined excitatory interneuron populations in laminae I–III of the mouse spinal cord. Mol Pain. https://doi.org/10.1177/1744806916629065

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Mecinas M, Polgár E, Bell AM, Herau M, Todd AJ (2018) Substance P-expressing excitatory interneurons in the mouse superficial dorsal horn provide a propriospinal input to the lateral spinal nucleus. Brain Struct Funct 223(5):2377–2392. https://doi.org/10.1007/s00429-018-1629-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Häring M, Zeisel A, Hochgerner H, Rinwa P, Jakobsson JET, Lönnerberg P, La Manno G, Sharma N, Borgius L, Kiehn O, Lagerström MC, Linnarsson S, Ernfors P (2018) Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types. Nat Neurosci 21(6):869–880. https://doi.org/10.1038/s41593-018-0141-1

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto T, Ase K, Sawamura S, Kikkawa U, Saito N, Tanaka C, Nishizuka Y (1988) Postnatal development of a brain-specific subspecies of protein kinase C in rat. J Neurosci 8:1678–1683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heinke B, Ruscheweyh R, Forsthuber L, Wunderbaldinger G, Sandkühler J (2004) Physiological, neurochemical and morphological properties of a subgroup of GABAergic spinal lamina II neurones identified by expression of green fluorescent protein in mice. J Physiol 560:249–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holzer P (1991) Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev 43:143–201

    CAS  PubMed  Google Scholar 

  • Hu HJ, Gereau RW 4th (2011) Metabotropic glutamate receptor 5 regulates excitability and Kv4.2-containing K+ channels primarily in excitatory neurons of the spinal dorsal horn. J Neurophysiol. 105(6):3010–3021. https://doi.org/10.1152/jn.01050.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu HJ, Carrasquillo Y, Karim F, Jung WE, Nerbonne JM, Schwarz TL, Gereau RW 4th (2006) The kv4.2 potassium channel subunit is required for pain plasticity. Neuron 50(1):89–100

    CAS  PubMed  Google Scholar 

  • Huang HY, Cheng JK, Shih YH, Chen PH, Wang CL, Tsaur ML (2005) Expression of A-type K channel alpha subunits Kv 4.2 and Kv 4.3 in rat spinal lamina II excitatory interneurons and colocalization with pain-modulating molecules. Eur J Neurosci 22(5):1149–1157

    PubMed  Google Scholar 

  • Huang L, Xian Q, Shen N, Shi L, Qu Y, Zhou L (2015) Congenital absence of corticospinal tract does not severely affect plastic changes of the developing postnatal spinal cord. Neuroscience 301:338–350. https://doi.org/10.1016/j.neuroscience.2015.06.017

    Article  CAS  PubMed  Google Scholar 

  • Hughes AS, Averill S, King VR, Molander C, Shortland PJ (2008) Neurochemical characterization of neuronal populations expressing protein kinase C gamma isoform in the spinal cord and gracile nucleus of the rat. Neuroscience 153:507–517. https://doi.org/10.1016/j.neuroscience.2008.01.082

    Article  CAS  PubMed  Google Scholar 

  • Inquimbert P, Rodeau JL, Schlichter R (2008) Regional differences in the decay kinetics of GABA(A) receptor-mediated miniature IPSCs in the dorsal horn of the rat spinal cord are determined by mitochondrial transport of cholesterol. J Neurosci 28(13):3427–3437. https://doi.org/10.1523/JNEUROSCI.5076-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa T, Marsala M, Sakabe T, Yaksh TL (2000) Characterization of spinal amino acid release and touch-evoked allodynia produced by spinal glycine or GABA(A) receptor antagonist. Neuroscience 95(3):781–786

    CAS  PubMed  Google Scholar 

  • Ji RR, Baba H, Brenner GJ, Woolf CJ (1999) Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci 2:1114–1119

    CAS  PubMed  Google Scholar 

  • Ji RR, Kohno T, Moore KA, Woolf CJ (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26(12):696–705

    CAS  PubMed  Google Scholar 

  • Ji RR, Nackley A, Huh Y, Terrando N, Maixner W (2018) Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiol 129(2):343–366

    Google Scholar 

  • Jonas P, Bischofberger J, Sandkühler J (1998) Corelease of two fast neurotransmitters at a central synapse. Science 281(5375):419–424

    CAS  PubMed  Google Scholar 

  • Keller AF, Coull JA, Chery N, Poisbeau P, De Koninck Y (2001) Region-specific developmental specialization of GABA-glycine cosynapses in laminas I–II of the rat spinal dorsal horn. J Neurosci 21(20):7871–7880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keller AF, Breton JD, Schlichter R, Poisbeau P (2004) Production of 5alpha-reduced neurosteroids is developmentally regulated and shapes GABA(A) miniature IPSCs in lamina II of the spinal cord. J Neurosci 24(4):907–915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keller AF, Beggs S, Salter MW, De Koninck Y (2007) Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain. Mol Pain 3:27

    PubMed  PubMed Central  Google Scholar 

  • Kim HK, Park SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE, Chung JM (2004) Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain 111:116–124

    CAS  PubMed  Google Scholar 

  • Koltzenburg M, Lundberg LE, Torebjörk HE (1992) Dynamic and static components of mechanical hyperalgesia in human hairy skin. Pain 51(2):207–219

    CAS  PubMed  Google Scholar 

  • Kontinen VK, Stanfa LC, Basu A, Dickenson AH (2001) Electrophysiologic evidence for increased endogenous GABAergic but not glycinergic inhibitory tone in the rat spinal nerve ligation model of neuropathy. Anesthesiology 94:333–339

    CAS  PubMed  Google Scholar 

  • Kose A, Saito N, Ito H, Kikkawa U, Nishizuka Y, Tanaka C (1988) Electron microscopic localization of type I protein kinase C in rat Purkinje cells. J Neurosci 8:4262–4628

    CAS  PubMed  PubMed Central  Google Scholar 

  • LaMotte RH, Shain CN, Simone DA, Tsai EF (1991) Neurogenic hyperalgesia: psychophysical studies of underlying mechanisms. J Neurophysiol 66:190–211

    CAS  PubMed  Google Scholar 

  • Larsson M, Broman J (2019) Synaptic organization of VGLUT3 expressing low-threshold mechanosensitive C fiber terminals in the rodent spinal cord. eNeuro. https://doi.org/10.1523/ENEURO.0007-19.2019

    Article  PubMed  PubMed Central  Google Scholar 

  • Latremoliere A, Woolf CJ (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10(9):895–926. https://doi.org/10.1016/j.jpain.2009.06.012

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee IO, Lim ES (2010) Intracisternal or intrathecal glycine, taurine, or muscimol inhibit bicuculline-induced allodynia and thermal hyperalgesia in mice. Acta Pharmacol Sin 31(8):907–914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li YQ, Li JL, Li H, Kaneko T, Mizuno N (2001) Protein kinase C gamma-like immunoreactivity of trigeminothalamic neurons in the medullary dorsal horn of the rat. Brain Res 913:159–164

    CAS  PubMed  Google Scholar 

  • Li L, Rutlin M, Abraira VE, Cassidy C, Kus L, Gong S, Jankowski MP, Luo W, Heintz N, Koerber HR, Woodbury CJ, Ginty DD (2011) The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147(7):1615–1627. https://doi.org/10.1016/j.cell.2011.11.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Latremoliere A, Li X, Zhang Z, Chen M, Wang X, Fang C, Zhu J, Alexandre C, Gao Z, Chen B, Ding X, Zhou JY, Zhang Y, Chen C, Wang KH, Woolf CJ, He Z (2018) Touch and tactile neuropathic pain sensitivity are set by corticospinal projections. Nature 561(7724):547–550. https://doi.org/10.1038/s41586-018-0515-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loomis CW, Khandwala H, Osmond G, Hefferan MP (2001) Coadministration of intrathecal strychnine and bicuculline effects synergistic allodynia in the rat: an isobolographic analysis. J Pharmacol Exp Ther 296(3):756–761

    CAS  PubMed  Google Scholar 

  • Lu Y, Perl ER (2003) A specific inhibitory pathway between substantia gelatinosa neurons receiving direct C-fiber input. J Neurosci 23(25):8752–8758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Perl ER (2005) Modular organization of excitatory circuits between neurons of the spinal superficial dorsal horn (laminae I and II). J Neurosci 25(15):3900–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Dong H, Gao Y, Gong Y, Ren Y, Gu N, Zhou S, Xia N, Sun YY, Ji RR, Xiong L (2013) A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. J Clin Investig 123:4050–4062. https://doi.org/10.1172/JCI70026

    Article  CAS  PubMed  Google Scholar 

  • Malmberg AB, Brandon EP, Idzerda RL, Liu H, McKnight GS, Basbaum AI (1997) Diminished inflammation and nociceptive pain with preservation of neuropathic pain in mice with a targeted mutation of the type I regulatory subunit of cAMP-dependent protein kinase. J Neurosci 17:7462–7470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malmberg AB, Chen C, Tonegawa S, Basbaum AI (1997) Preserved acute pain and reduced neuropathic pain in mice lacking PKCgamma. Science 278(5336):279–283

    CAS  PubMed  Google Scholar 

  • Mao J, Price DD, Phillips LL, Lu J, Mayer DJ (1995a) Increases in protein kinase C gamma immunoreactivity in the spinal cord of rats associated with tolerance to the analgesic effects of morphine. Brain Res 677(2):257–267

    CAS  PubMed  Google Scholar 

  • Mao J, Price DD, Phillips LL, Lu J, Mayer DJ (1995b) Increases in protein kinase C gamma immunoreactivity in the spinal cord dorsal horn of rats with painful mononeuropathy. Neurosci Lett 198(2):75–78

    CAS  PubMed  Google Scholar 

  • Martin WJ, Liu H, Wang H, Malmberg AB, Basbaum AI (1999) Inflammation-induced up-regulation of protein kinase Cgamma immunoreactivity in rat spinal cord correlates with enhanced nociceptive processing. Neuroscience 88:1267–1274

    CAS  PubMed  Google Scholar 

  • Maxwell DJ, Belle MD, Cheunsuang O, Stewart A, Morris R (2007) Morphology of inhibitory and excitatory interneurons in superficial laminae of the rat dorsal horn. J Physiol 584(Pt 2):521–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melnick IV, Santos SF, Safronov BV (2004) Mechanism of spike frequency adaptation in substantia gelatinosa neurones of rat. J Physiol 559:383–395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mermet-Joret N, Chatila N, Pereira B, Monconduit L, Dallel R, Antri M (2017) Lamina specific postnatal development of PKCγ interneurons within the rat medullary dorsal horn. Dev Neurobiol 77(1):102–119. https://doi.org/10.1002/dneu.22414

    Article  CAS  PubMed  Google Scholar 

  • Mesnage B, Gaillard S, Godin AG, Rodeau JL, Hammer M, Von Engelhardt J, Wiseman PW, De Koninck Y, Schlichter R, Cordero-Erausquin M (2011) Morphological and functional characterization of cholinergic interneurons of the dorsal horn of the mouse spinal cord. J Comp Neurol 519:3139–3158. https://doi.org/10.1002/cne.22668

    Article  CAS  PubMed  Google Scholar 

  • Miraucourt LS, Dallel R, Voisin DL (2007) Glycine inhibitory dysfunction turns touch into pain through PKCgamma interneurons. PLoS ONE 2(11):e1116

    PubMed  PubMed Central  Google Scholar 

  • Miraucourt LS, Moisset X, Dallel R, Voisin DL (2009) Glycine inhibitory dysfunction induces a selectively dynamic, morphine-resistant, and neurokinin 1 receptor-independent mechanical allodynia. J Neurosci 29(8):2519–2527. https://doi.org/10.1523/JNEUROSCI.3923-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miraucourt LS, Peirs C, Dallel R, Voisin DL (2011) Glycine inhibitory dysfunction turns touch into pain through astrocyte-derived D-serine. Pain 152(6):1340–1348. https://doi.org/10.1016/j.pain.2011.02.021

    Article  CAS  PubMed  Google Scholar 

  • Mitchell EA, Gentet LJ, Dempster J, Belelli D (2007) GABAA and glycine receptor-mediated transmission in rat lamina II neurones: relevance to the analgesic actions of neuroactive steroids. J Physiol 583(Pt 3):1021–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mori M, Kose A, Tsujino T, Tanaka C (1990) Immunocytochemical localization of protein kinase C subspecies in the rat spinal cord: light and electron microscopic study. J Comp Neurol 299:167–177

    CAS  PubMed  Google Scholar 

  • Nelson TS (2019) Dorsal horn PKCγ interneurons mediate mechanical allodynia through 5-HT2AR-dependent structural reorganization. J Neurosci 39(32):6221–6223. https://doi.org/10.1523/JNEUROSCI.0291-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann S, Braz JM, Skinner K, Llewellyn-Smith IJ, Basbaum AI (2008) Innocuous, not noxious, input activates PKCgamma interneurons of the spinal dorsal horn via myelinated afferent fibers. J Neurosci 28(32):7936–7944. https://doi.org/10.1523/JNEUROSCI.1259-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Brien JA, Berger AJ (1999) Cotransmission of GABA and glycine to brain stem motoneurons. J Neurophysiol 82(3):1638–1641

    CAS  PubMed  Google Scholar 

  • Ochoa JL, Yarnitsky D (1993) Mechanical hyperalgesias in neuropathic pain patients: dynamic and static subtypes. Ann Neurol 33(5):465–472

    CAS  PubMed  Google Scholar 

  • Onaka M, Minami T, Nishihara I, Ito S (1996) Involvement of glutamate receptors in strychnine- and bicuculline-induced allodynia in conscious mice. Anesthesiology 84(5):1215–1222

    CAS  PubMed  Google Scholar 

  • Pawlowski SA, Gaillard S, Ghorayeb I, Ribeiro-da-Silva A, Schlichter R, Cordero-Erausquin M (2013) A novel population of cholinergic neurons in the macaque spinal dorsal horn of potential clinical relevance for pain therapy. J Neurosci 33(9):3727–3737. https://doi.org/10.1523/JNEUROSCI.3954-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peirs C, Seal RP (2016) Neural circuits for pain: recent advances and current views. Science 354(6312):578–584. https://doi.org/10.1126/science.aaf8933

    Article  CAS  PubMed  Google Scholar 

  • Peirs C, Dallel R, Todd AJ (2020) Recent advances in our understanding of the organization of dorsal horn neuron populations and their contribution to cutaneous mechanical allodynia. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-020-02159-1

    Article  Google Scholar 

  • Peirs C, Patil S, Bouali-Benazzouz R, Artola A, Landry M, Dallel R (2014) Protein kinase C gamma interneurons in the rat medullary dorsal horn: distribution and synaptic inputs to these neurons, and subcellular localization of the enzyme. J Comp Neurol 522:393–413. https://doi.org/10.1002/cne.23407

    Article  CAS  PubMed  Google Scholar 

  • Peirs C, Williams SP, Zhao X, Walsh CE, Gedeon JY, Cagle NE, Goldring AC, Hioki H, Liu Z, Marell PS, Seal RP (2015) Dorsal horn circuits for persistent mechanical pain. Neuron 87(4):797–812. https://doi.org/10.1016/j.neuron.2015.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peirs C, Bourgois N, Artola A, Dallel R (2016) Protein kinase C γ interneurons mediate C-fiber-induced orofacial secondary static mechanical allodynia, but not C-fiber-induced nociceptive behavior. Anesthesiology 124(5):1136–1152. https://doi.org/10.1097/ALN.0000000000001000

    Article  CAS  PubMed  Google Scholar 

  • Petitjean H, Pawlowski SA, Fraine SL, Sharif B, Hamad D, Fatima T, Berg J, Brown CM, Jan LY, Ribeiro-da-Silva A, Braz JM, Basbaum AI, Sharif-Naeini R (2015) Dorsal horn parvalbumin neurons are gate-keepers of touch-evoked pain after nerve injury. Cell Rep 13(6):1246–1257. https://doi.org/10.1016/j.celrep.2015.09.080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham-Dang N, Descheemaeker A, Dallel R, Artola A (2016) Activation of medullary dorsal horn γ isoform of protein kinase C interneurons is essential to the development of both static and dynamic facial mechanical allodynia. Eur J Neurosci 43(6):802–810. https://doi.org/10.1111/ejn.13165

    Article  PubMed  Google Scholar 

  • Poisbeau P, Patte-Mensah C, Keller AF, Barrot M, Breton JD, Luis-Delgado OE, Freund-Mercier MJ, Mensah-Nyagan AG, Schlichter R (2005) Inflammatory pain upregulates spinal inhibition via endogenous neurosteroid production. J Neurosci 25(50):11768–11776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polgár E, Fowler JH, McGill MM, Todd AJ (1999) The types of neuron which contain protein kinase C gamma in rat spinal cord. Brain Res 833(1):71–80

    PubMed  Google Scholar 

  • Polgár E, Hughes DI, Riddell JS, Maxwell DJ, Puskar Z, Todd AJ (2003) Selective loss of spinal GABAergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain. Pain 104:229–239

    PubMed  Google Scholar 

  • Polgár E, Furuta T, Kaneko T, Todd A (2006) Characterization of neurons that express preprotachykinin B in the dorsal horn of the rat spinal cord. Neuroscience 139(2):687–697

    PubMed  Google Scholar 

  • Polgár E, Sardella TC, Watanabe M, Todd AJ (2011) Quantitative study of NPY-expressing GABAergic neurons and axons in rat spinal dorsal horn. J Comp Neurol 519(6):1007–1023. https://doi.org/10.1002/cne.22570

    Article  CAS  PubMed  Google Scholar 

  • Rajaofetra N, Sandillon F, Geffard M, Privat A (1989) Pre- and post-natal ontogeny of serotonergic projections to the rat spinal cord. J Neurosci Res 22:305–321

    CAS  PubMed  Google Scholar 

  • Reeve AJ, Dickenson AH, Kerr NC (1998) Spinal effects of bicuculline: modulation of an allodynia-like state by an A1-receptor agonist, morphine, and an NMDA-receptor antagonist. J Neurophysiol 79:1494–1507

    CAS  PubMed  Google Scholar 

  • Ruscheweyh R, Sandkühler J (2002) Lamina-specific membrane and discharge properties of rat spinal dorsal horn neurones in vitro. J Physiol 541(Pt 1):231–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruscheweyh R, Wilder-Smith O, Drdla R, Liu XG, Sandkühler J (2011) Long-term potentiation in spinal nociceptive pathways as a novel target for pain therapy. Mol Pain 7:20. https://doi.org/10.1186/1744-8069-7-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rustioni A, Kaufman AB (1977) Identification of cells or origin of nonprimary afferents to the dorsal column nuclei of the cat. Exp Brain Res 27:1–14

    CAS  PubMed  Google Scholar 

  • Saito N, Shirai Y (2002) Protein kinase C gamma (PKC gamma): function of neuron specific isotype. J Biochem 132(5):683–687

    CAS  PubMed  Google Scholar 

  • Sathyamurthy A, Johnson KR, Matson KJE, Dobrott CI, Li L, Ryba AR, Bergman TB, Kelly MC, Kelley MW, Levine AJ (2018) Massively parallel single nucleus transcriptional profiling defines spinal cord neurons and their activity during behavior. Cell Rep 22(8):2216–2225. https://doi.org/10.1016/j.celrep.2018.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scanlon GC, Wallace MS, Ispirescu JS, Schulteis G (2006) Intradermal capsaicin causes dose-dependent pain, allodynia, and hyperalgesia in humans. J Investig Med 54:238–244. https://doi.org/10.2310/6650.2006.05046

    Article  CAS  PubMed  Google Scholar 

  • Schwartz ES, Lee I, Chung K, Chung JM (2008) Oxidative stress in the spinal cord is an important contributor in capsaicin-induced mechanical secondary hyperalgesia in mice. Pain 138:514–524. https://doi.org/10.1016/j.pain.2008.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seagrove LC, Suzuki R, Dickenson AH (2004) Electrophysiological characterizations of rat lamina I dorsal horn neurons and the involvement of excitatory amino acid receptors. Pain 108:76–87

    CAS  PubMed  Google Scholar 

  • Seal RP, Wang X, Guan Y, Raja SN, Woodbury CJ, Basbaum AI, Edwards RH (2009) Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature 462(7273):651–655. https://doi.org/10.1038/nature08505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shumilla JA, Liron T, Mochly-Rosen D, Kendig JJ, Sweitzer SM (2005) Ethanol withdrawal-associated allodynia and hyperalgesia: age-dependent regulation by protein kinase C epsilon and gamma isoenzymes. J Pain 6(8):535–549

    CAS  PubMed  Google Scholar 

  • Smith FL, Gabra BH, Smith PA, Redwood MC, Dewey WL (2007) Determination of the role of conventional, novel and atypical PKC isoforms in the expression of morphine tolerance in mice. Pain 127(1–2):129–139

    CAS  PubMed  Google Scholar 

  • Song Z, Zou W, Liu C, Guo Q (2010) Gene knockdown with lentiviral vector-mediated intrathecal RNA interference of protein kinase C gamma reverses chronic morphine tolerance in rats. J Gene Med 12(11):873–880. https://doi.org/10.1002/jgm.1514

    Article  CAS  PubMed  Google Scholar 

  • Sugita S, Ho A, Südhof TC (2002) NECABs: A family of neuronal Ca(2+)-binding proteins with an unusual domain structure and a restricted expression pattern. Neuroscience 112(1):51–63

    CAS  PubMed  Google Scholar 

  • Sweitzer SM, Wong SME, Peters MC, Mochly-Rosen D, Yeomans DC, Kendig JJ (2004) Protein kinase C epsilon and gamma: involvement in formalin-induced nociception in neonatal rats. J Pharmacol Exp Ther 309:616–625

    CAS  PubMed  Google Scholar 

  • Sweitzer SM, Wong SM, Tjolsen A, Allen CP, Mochly-Rosen D, Kendig JJ (2004) Exaggerated nociceptive responses on morphine withdrawal: roles of protein kinase C epsilon and gamma. Pain 110(1–2):281–289

    CAS  PubMed  Google Scholar 

  • Szallasi A (1994) The vanilloid (capsaicin) receptor: receptor types and species differences. Gen Pharmacol 25:223–243

    CAS  PubMed  Google Scholar 

  • Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 11(12):823–836. https://doi.org/10.1038/nrn2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todd AJ (2017) Identifying functional populations among the interneurons in laminae I–III of the spinal dorsal horn. Mol Pain 13:1744806917693003. https://doi.org/10.1177/1744806917693003

    Article  PubMed  PubMed Central  Google Scholar 

  • Todd AJ, McKenzie J (1989) GABA-immunoreactive neurons in the dorsal horn of the rat spinal cord. Neuroscience 31(3):799–806

    CAS  PubMed  Google Scholar 

  • Todd AJ, McGill MM, Shehab SA (2000) Neurokinin 1 receptor expression by neurons in laminae I, III and IV of the rat spinal dorsal horn that project to the brainstem. Eur J Neurosci 12(2):689–700

    CAS  PubMed  Google Scholar 

  • Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    CAS  PubMed  Google Scholar 

  • Torsney C, MacDermott AB (2006) Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 26(6):1833–1843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, Hjerling-Leffler J, Haeggström J, Kharchenko O, Kharchenko PV, Linnarsson S, Ernfors P (2015) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 18(1):145–153. https://doi.org/10.1038/nn.3881

    Article  CAS  PubMed  Google Scholar 

  • Vasileiou I, Adamakis I, Patsouris E, Theocharis S (2013) Ephrins and pain. Expert Opin Ther Targets 17(8):879–887. https://doi.org/10.1517/14728222.2013.801456

    Article  CAS  PubMed  Google Scholar 

  • Wang YY, Wei YY, Huang J, Wang W, Tamamaki N, Li YQ, Wu SX (2009) Expression patterns of 5-HT receptor subtypes 1A and 2A on GABAergic neurons within the spinal dorsal horn of GAD67-GFP knock-in mice. J Chem Neuroanat 38:75–81. https://doi.org/10.1016/j.jchemneu.2009.04.003

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Lopes C, Wende H, Guo Z, Cheng L, Birchmeier C, Ma Q (2013) Ontogeny of excitatory spinal neurons processing distinct somatic sensory modalities. J Neurosci 33(37):14738–14748. https://doi.org/10.1523/JNEUROSCI.5512-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasaka T, Kato G, Furue H, Rashid MH, Sonohata M, Tamae A, Murata Y, Masuko S, Yoshimura M (2007) Cell-type-specific excitatory and inhibitory circuits involving primary afferents in the substantia gelatinosa of the rat spinal dorsal horn in vitro. J Physiol 581:603–618

    PubMed  PubMed Central  Google Scholar 

  • Yasaka T, Tiong SY, Hughes DI, Riddell JS, Todd AJ (2010) Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach. Pain 151:475–488. https://doi.org/10.1016/j.pain.2010.08.008

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshimura M, Jessell TM (1989) Membrane properties of rat substantia gelatinosa neurons in vitro. J Neurophysiol 62(1):109–118

    CAS  PubMed  Google Scholar 

  • Yowtak J, Lee KY, Kim HY, Wang J, Kim HK, Chung K, Chung JM (2011) Reactive oxygen species contribute to neuropathic pain by reducing spinal GABA release. Pain 152(4):844–852. https://doi.org/10.1016/j.pain.2010.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yukhananov RY, Kissin I (2003) Comment on Zeitz KP, et al.: Reduced development of tolerance to the analgesic effects of morphine and clonidine in PKC mutant mice, Pain 2001, 94(3):245–253. Pain 102:309–310

    CAS  PubMed  Google Scholar 

  • Zeilhofer HU, Wildner H, Yévenes GE (2012) Fast synaptic inhibition in spinal sensory processing and pain control. Physiol Rev 92(1):193–235. https://doi.org/10.1152/physrev.00043.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, Häring M, Braun E, Borm LE, La Manno G, Codeluppi S, Furlan A, Lee K, Skene N, Harris KD, Hjerling-Leffler J, Arenas E, Ernfors P, Marklund U, Linnarsson S (2018) Molecular architecture of the mouse nervous system. Cell 174(4):999–1014.e22. https://doi.org/10.1016/j.cell.2018.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeitz KP, Malmberg AB, Gilbert H, Basbaum AI (2001) Reduced development of tolerance to the analgesic effects of morphine and clonidine in PKCγ mutant mice. Pain 94(3):245–253

    CAS  PubMed  Google Scholar 

  • Zhang MD, Barde S, Szodorai E, Josephson A, Mitsios N, Watanabe M, Attems J, Lubec G, Kovács GG, Uhlén M, Mulder J, Harkany T, Hökfelt T (2016) Comparative anatomical distribution of neuronal calcium-binding protein (NECAB) 1 and -2 in rodent and human spinal cord. Brain Struct Funct. 221(7):3803–3823. https://doi.org/10.1007/s00429-016-1191-3

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Leitges M, Gereau RW 4th (2011) Isozyme-specific effects of protein kinase C in pain modulation. Anesthesiology 115(6):1261–1270. https://doi.org/10.1097/ALN.0b013e3182390788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou XL, Zhang C, Wang Y, Wang M, Sun LH, Yu LN, Cao JL, Yan M (2015) EphrinB-EphB signaling regulates spinal pain processing via PKCγ. Neuroscience 307:64–72. https://doi.org/10.1016/j.neuroscience.2015.08.048

    Article  CAS  PubMed  Google Scholar 

  • Zou W, Song Z, Guo Q, Liu C, Zhang Z, Zhang Y (2011) Intrathecal lentiviral-mediated RNA interference targeting PKCγ attenuates chronic constriction injury-induced neuropathic pain in rats. Hum Gene Ther 22(4):465–475. https://doi.org/10.1089/hum.2010.207

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Institut National de la Santé et de la Recherche Médicale (INSERM), Université Clermont Auvergne (UCA), Région Auvergne-Rhône-Alpes and CHU Clermont-Ferrand (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Artola.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artola, A., Voisin, D. & Dallel, R. PKCγ interneurons, a gateway to pathological pain in the dorsal horn. J Neural Transm 127, 527–540 (2020). https://doi.org/10.1007/s00702-020-02162-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-020-02162-6

Keywords

Navigation