Skip to main content
Log in

Regularized Partial Least Square Regression for Continuous Decoding in Brain-Computer Interfaces

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Continuous decoding is a crucial step in many types of brain-computer interfaces (BCIs). Linear regression techniques have been widely used to determine a linear relation between the input and desired output. A serious issue in this technique is the over-fitting phenomenon. Partial least square (PLS) is a well-known and popular method which tries to overcome this problem. PLS calculates a set of latent variables which are maximally correlated to the output and determines a linear relation between a low-rank estimation of the input and output data. However, this method has shown its potential to overfit the training data in many cases. In this paper, a regularized version of PLS (RPLS) is proposed which tries to determine a linear relation between the latent vector of the input and desired output using the regularized least square instead of the ordinary one. This approach is able to control the effect of non-efficient and non-generalized latent vectors in prediction. We have shown that the proposed method outperforms Ridge regression (RR), PLS, and PLS with regularized weights (PLSRW) in estimating the output in two different real BCI datasets, Neurotycho public electrocorticogram (ECoG) dataset for decoding trajectory of hand movements in monkeys and our own local field potential (LFP) dataset for decoding applied force performed by rats. Furthermore, the results indicate that RPLS is more robust against the increase in the number of latent vectors compared to PLS and PLSRW. Next, we evaluated the resistance of our proposed method against the presence of different noise levels in a BCI application and compared it to other techniques using a semi-simulated dataset. This approach revealed that RPLS offered a higher performance compared with other techniques in all levels of noise. Finally, to illustrate the usability of RPLS in other type of data, we presented the application of this method in predicting relative active substance content of pharmaceutical tablets using near-infrared (NIR) transmittance spectroscopy data. This application showed a superior performance of the proposed method compared to other decoding methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://neurotycho.org/epidural-ecog-food-tracking-task

References

  • Abdi, H. (2010). Partial least squares regression and projection on latent structure regression (PLS regression). Wiley interdisciplinary reviews: computational statistics, 2(1), 97–106.

    Article  Google Scholar 

  • Allen, G. I., Peterson, C., Vannucci, M., & Maletić-Savatić, M. (2013). Regularized partial least squares with an application to NMR spectroscopy. Statistical Analysis and Data Mining: The ASA Data Science Journal, 6(4), 302–314.

    Article  Google Scholar 

  • Anderson, T. W., & Darling, D. A. (1954). A test of goodness of fit. Journal of the American Statistical Association, 49(268), 765–769.

    Article  Google Scholar 

  • Chun, H., & Keleş, S. (2010). Sparse partial least squares regression for simultaneous dimension reduction and variable selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(1), 3–25.

    Article  Google Scholar 

  • Dähne, S., Meinecke, F. C., Haufe, S., Höhne, J., Tangermann, M., Müller, K.-R., & Nikulin, V. V. (2014). SPoC: A novel framework for relating the amplitude of neuronal oscillations to behaviorally relevant parameters. NeuroImage, 86, 111–122.

    Article  Google Scholar 

  • De Jong, S. (1993). SIMPLS: An alternative approach to partial least squares regression. Chemome and Intelligent Laboratory Systems, 18(3), 251–263.

    Article  Google Scholar 

  • Eliseyev, A., Moro, C., Faber, J., Wyss, A., Torres, N., Mestais, C., Benabid, A. L., & Aksenova, T. (2012). L1-penalized N-way PLS for subset of electrodes selection in BCI experiments. Journal of Neural Engineering, 9(4), 045010.

    Article  Google Scholar 

  • Foodeh, R., Khorasani, A., Shalchyan, V., & Daliri, M. R. (2017). Minimum noise estimate filter: A novel automated artifacts removal method for field potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(8), 1143–1152.

    Article  Google Scholar 

  • Fu, Y., Peng, J., & Dong, X. (2016). Partial least squares with a regularized weight. Journal Mathematical Chemistry, 54(2), 403–415.

    Article  CAS  Google Scholar 

  • Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: A tutorial. Analytica Chimica Acta, 185, 1–17.

    Article  CAS  Google Scholar 

  • Golub, G. H., Hansen, P. C., & O'Leary, D. P. (1999). Tikhonov regularization and total least squares. SIAM Journal on Matrix Analysis and Applications, 21(1), 185–194.

    Article  Google Scholar 

  • Hansen, P. C., & O’Leary, D. P. (1993). The use of the L-curve in the regularization of discrete ill-posed problems. SIAM Journal Science Computing, 14(6), 1487–1503.

    Article  Google Scholar 

  • Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55–67.

    Article  Google Scholar 

  • J.-H. Jeong, K.-H. Shim, D.-J. Kim, and S.-W. Lee (2019). “Trajectory decoding of arm reaching movement imageries for brain-controlled robot arm system.” 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (pp. 5544–5547). Berlin: IEEE.

  • Jerbi, K., Vidal, J., Mattout, J., Maby, E., Lecaignard, F., Ossandon, T., Hamamé, C., Dalal, S., Bouet, R., & Lachaux, J.-P. (2011). Inferring hand movement kinematics from MEG, EEG and intracranial EEG: From brain-machine interfaces to motor rehabilitation. Irbm, 32(1), 8–18.

    Article  Google Scholar 

  • Khorasani, A., Beni, N. H., Shalchyan, V., & Daliri, M. R. (2016). Continuous force decoding from local field potentials of the primary motor cortex in freely moving rats. Scientific Reports, 6, 35238.

    Article  CAS  Google Scholar 

  • Khorasani, A., Shalchyan, V., & Daliri, M. R. (2019). Adaptive artifact removal from intracortical channels for accurate decoding of force signal in freely moving rats. Frontiers Neuroscience, 13, 350.

    Article  Google Scholar 

  • Marathe, A., & Taylor, D. (2013). Decoding continuous limb movements from high-density epidural electrode arrays using custom spatial filters. Journal of neural engineering, 10(3), 036015.

    Article  CAS  Google Scholar 

  • Meinel, A., Castaño-Candamil, S., Blankertz, B., Lotte, F., & Tangermann, M. (2019). Characterizing regularization techniques for spatial filter optimization in oscillatory EEG regression problems. Neuroinformatics, 17(2), 235–251.

    Article  Google Scholar 

  • Nicolas-Alonso, L. F., & Gomez-Gil, J. (2012). Brain computer interfaces, a review. Sensors (Basel), 12(2), 1211–1279.

    Article  Google Scholar 

  • Ramadan, R. A., & Vasilakos, A. V. (2017). Brain computer interface: Control signals review. Neurocomputing, 223, 26–44.

    Article  Google Scholar 

  • Shimoda, K., Nagasaka, Y., Chao, Z. C., & Fujii, N. (2012). Decoding continuous three-dimensional hand trajectories from epidural electrocorticographic signals in Japanese macaques. Journal of neural engineering, 9(3), 036015.

    Article  Google Scholar 

  • Srinivasan, B. V., Luo, Y., Garcia-Romero, D., Zotkin, D. N., & Duraiswami, R. (2013). A symmetric kernel partial least squares framework for speaker recognition. IEEE Transactions on Audio Speech, and Language Processing, 21(7), 1415–1423.

    Article  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 267–288.

  • Ting, J.-A., D’Souza, A., Yamamoto, K., Yoshioka, T., Hoffman, D., Kakei, S., Sergio, L., Kalaska, J., Kawato, M., & Strick, P. (2008). Variational Bayesian least squares: An application to brain–machine interface data. Neural Netw, 21(8), 1112–1131.

    Article  Google Scholar 

  • van Gerven, M. A., Chao, Z. C., & Heskes, T. (2012). On the decoding of intracranial data using sparse orthonormalized partial least squares. Journal of neural engineering, 9(2), 026017.

    Article  Google Scholar 

  • Velliste, M., Perel, S., Spalding, M. C., Whitford, A. S., & Schwartz, A. B. (2008). Cortical control of a prosthetic arm for self-feeding. Nature, 453, 7198–1098.

    Article  Google Scholar 

  • Vidaurre, D., van Gerven, M. A., Bielza, C., Larrañaga, P., & Heskes, T. (2013). Bayesian sparse partial least squares. Neural Compututation, 25(12), 3318–3339.

    Article  Google Scholar 

  • K. Volkova, M. A. Lebedev, A. Kaplan, and A. Ossadtchi, “Decoding Movement From Electrocorticographic Activity: A Review,” Frontiers in Neuroinformatics, vol. 13, 2019.

  • Waldert, S., Pistohl, T., Braun, C., Ball, T., Aertsen, A., & Mehring, C. (2009). A review on directional information in neural signals for brain-machine interfaces. Journal of Physiology-Paris, 103(3–5), 244–254.

    Article  Google Scholar 

  • Weiskopf, N., Mathiak, K., Bock, S. W., Scharnowski, F., Veit, R., Grodd, W., Goebel, R., & Birbaumer, N. (2004). Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Transaction Biomedical Engineering, 51(6), 966–970.

    Article  Google Scholar 

  • J. Wolpaw, and E. W. Wolpaw, Brain-computer interfaces: principles and practice: OUP USA, 2012.

  • Wu, D., King, J.-T., Chuang, C.-H., Lin, C.-T., & Jung, T.-P. (2017). Spatial filtering for EEG-based regression problems in brain–computer interface (BCI). IEEE Trans Fuzzy Syst, 26(2), 771–781.

    Article  Google Scholar 

  • Zafar, A., & Hong, K.-S. (2017). Detection and classification of three-class initial dips from prefrontal cortex. Biomedical Optics Express, 8(1), 367–383.

    Article  Google Scholar 

  • A. Zafar, and K.-S. Hong, 2018, “Neuronal Activation Detection Using Vector Phase Analysis with Dual Threshold Circles: A Functional Near-Infrared Spectroscopy Study,” International journal of neural systems, pp. 1850031

  • Zhuang, J., Truccolo, W., Vargas-Irwin, C., & Donoghue, J. P. (2010). Decoding 3-D reach and grasp kinematics from high-frequency local field potentials in primate primary motor cortex. IEEE Transction Biomedical Engineering, 57(7), 1774–1784.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their thoughtful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Daliri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foodeh, R., Ebadollahi, S. & Daliri, M.R. Regularized Partial Least Square Regression for Continuous Decoding in Brain-Computer Interfaces. Neuroinform 18, 465–477 (2020). https://doi.org/10.1007/s12021-020-09455-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-020-09455-x

Keywords

Navigation