Skip to main content
Log in

Growth competition during columnar solidification of seaweed microstructures

Insights from 3-D phase-field simulations

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The mechanisms by which interfacial instabilities instigate the growth of solidification patterns is a topic of longstanding interest. In columnar solidification of metallic melts, where the solid-liquid interfacial energy is anisotropic, evolving dendritic patterns compete depending on their relative misorientation. By contrast, organic “plastic crystals”, such as alloys based on succinonitrile, where the anisotropy in their solid-liquid interfacial energy is extremely weak, solidify forming seaweed patterns that typically exhibit little, if any, growth competition. We explore in this study mechanisms by which columnar solidification microstructures of binary alloys with low crystalline anisotropy compete. We adopt toward this end a validated Navier-Stokes multiphase-field approach to characterize the influence of grain misorientation, seed morphology, and melt advection on the growth competition. Simulated seaweed patterns indicate profound influences of all three factors, although characteristic solidification morphologies are observed to evolve depending on the melt flow intensity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W.W. Mullins, R. Sekerka, J. Appl. Phys. 35, 444 (1964)

    Article  ADS  Google Scholar 

  2. N. Noël, H. Jamgotchian, B. Billia, J. Cryst. Growth 181, 117 (1997)

    Article  ADS  Google Scholar 

  3. H. Xing, C. Wang, J. Wang, C. Chen, Sci. China Phys. Mech. 54, 2174 (2011)

    Article  Google Scholar 

  4. R. Schaefer, M. Glicksman, Metall. Trans. 1, 1973 (1970)

    Article  Google Scholar 

  5. N. Noël, H. Jamgotchian, B. Billia, J. Cryst. Growth 187, 516 (1998)

    Article  ADS  Google Scholar 

  6. D. Benielli, N. Bergeon, H. Jamgotchian, B. Billia, P. Voge, Phys. Rev. E 65, 051604 (2002)

    Article  ADS  Google Scholar 

  7. K. Murakami, H. Aihara, T. Okamoto, Acta Metall. Mater. 32, 933 (1984)

    Article  Google Scholar 

  8. K. Ankit, H. Xing, M. Selzer, B. Nestler, M.E. Glicksman, J. Cryst. Growth 457, 52 (2017)

    Article  ADS  Google Scholar 

  9. D. Tourret, A. Karma, Acta Mater. 82, 64 (2015)

    Article  Google Scholar 

  10. H. Jamgotchian, N. Bergeon, D. Benielli, P. Voge, B. Billia, R. Guérin, Phys. Rev. Lett. 87, 166105 (2001)

    Article  ADS  Google Scholar 

  11. Y.J. Chen, S.H. Davis, J. Fluid Mech. 421, 369 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  12. J. Nittmann, H.E. Stanley, Nature 321, 663 (1986)

    Article  ADS  Google Scholar 

  13. E. Ben-Jacob, G. Deutscher, P. Garik, N.D. Goldenfeld, Y. Lareah, Phys. Rev. Lett. 57, 1903 (1986)

    Article  ADS  Google Scholar 

  14. B. Utter, R. Ragnarsson, E. Bodenschatz, Phys. Rev. Lett. 86, 4604 (2001)

    Article  ADS  Google Scholar 

  15. B. Utter, E. Bodenschatz, Phys. Rev. E 66, 051604 (2002)

    Article  ADS  Google Scholar 

  16. B. Utter, E. Bodenschatz, Phys. Rev. E 72, 011601 (2005)

    Article  ADS  Google Scholar 

  17. T. Ihle, H. Müller-Krumbhaar, Phys. Rev. E 49, 2972 (1994)

    Article  ADS  Google Scholar 

  18. S. Akamatsu, G. Faivre, T. Ihle, Phys. Rev. E 51, 4751 (1995)

    Article  ADS  Google Scholar 

  19. J. Dantzig, P. Di Napoli, J. Friedli, M. Rappaz, Metall. Mater. Trans. A 44, 5532 (2013)

    Article  Google Scholar 

  20. W.J. Boettinger, S.R. Coriell, A. Greer, A. Karma, W. Kurz, M. Rappaz, R. Trivedi, Acta Mater. 48, 43 (2000)

    Article  Google Scholar 

  21. X. Tong, C. Beckermann, A. Karma, Q. Li, Phys. Rev. E 63, 061601 (2001)

    Article  ADS  Google Scholar 

  22. W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma, Annu. Rev. Mater. Res. 32, 163 (2002)

    Article  Google Scholar 

  23. N. Provatas, Q. Wang, M. Haataja, M. Grant, Phys. Rev. Lett. 91, 155502 (2003)

    Article  ADS  Google Scholar 

  24. M. Amoorezaei, S. Gurevich, N. Provatas, Acta Mater. 60, 657 (2012)

    Article  Google Scholar 

  25. A. Choudhury, M. Kellner, B. Nestler, Curr. Opin. Solid State Mater. Sci. 19, 287 (2015)

    Article  ADS  Google Scholar 

  26. H. Xing, K. Ankit, X. Dong, H. Chen, K. Jin, Int. J. Heat Mass Transfer 117, 1107 (2018)

    Article  Google Scholar 

  27. C. Beckermann, H.J. Diepers, I. Steinbach, A. Karma, X. Tong, J. Comput. Phys. 154, 468 (1999)

    Article  ADS  Google Scholar 

  28. C. Chen, Y. Tsai, C. Lan, Int. J. Heat Mass Transfer 52, 1158 (2009)

    Article  Google Scholar 

  29. B. Nestler, A.A. Wheeler, L. Ratke, C. Stöcker, Phys. D: Nonlinear Phenom. 141, 133 (2000)

    Article  ADS  Google Scholar 

  30. W. Boettinger, F. Biancaniello, S. Coriell, Metall. Trans. A 12, 321 (1981)

    Article  Google Scholar 

  31. A. Choudhury, B. Nestler, Phys. Rev. E 85, 021602 (2012)

    Article  ADS  Google Scholar 

  32. B. Nestler, H. Garcke, B. Stinner, Phys. Rev. E 71, 041609 (2005)

    Article  ADS  Google Scholar 

  33. N. Moelans, Acta Mater. 59, 1077 (2011)

    Article  Google Scholar 

  34. H. Xing, X. Dong, H. Wu, G. Hao, J. Wang, C. Chen, K. Jin, Sci. Rep. 6, 26625 (2016)

    Article  ADS  Google Scholar 

  35. Y. Chen, B. Billia, D.Z. Li, H. Nguyen-Thi, N.M. Xiao, A.A. Bogno, Acta Mater. 66, 219 (2014)

    Article  Google Scholar 

  36. J. Hötzer, O. Tschukin, M.B. Said, M. Berghoff, M. Jainta, G. Barthelemy, N. Smorchkov, D. Schneider, M. Selzer, B. Nestler, J. Mater. Sci. 51, 1788 (2016)

    Article  ADS  Google Scholar 

  37. A. Karma, Phys. Rev. E 48, 3441 (1993)

    Article  ADS  Google Scholar 

  38. A. Karma, W.J. Rappel, Phys. Rev. E 60, 3614 (1999)

    Article  ADS  Google Scholar 

  39. G. Marsaglia, T.A. Bray, SIAM Rev. 6, 260 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  40. Y. Lu, C. Beckermann, J.C. Ramirez, J. Cryst. Growth 280, 320 (2005)

    Article  ADS  Google Scholar 

  41. M. Selzer, PhD Thesis, KIT-Bibliothek (2014)

  42. V. Laxmipathy, F. Wang, M. Selzer, B. Nestler, K. Ankit, Comput. Mater. Sci. 170, 109196 (2019)

    Article  Google Scholar 

  43. M. Griebel, T. Dornseifer, T. Neunhoeffer, Numerical Simulation in Fluid Dynamics: A Practical Introduction (Society for Industrial and Applied Mathematics, 1998)

  44. J.A. Warren, R. Kobayashi, A.E. Lobkovsky, W.C. Carter, Acta Mater. 51, 6035 (2003)

    Article  Google Scholar 

  45. S. Yeh, C. Chen, C. Lan, J. Cryst. Growth 324, 296 (2011)

    Article  ADS  Google Scholar 

  46. W. Mullins, Trans. Am. Inst. Min. Metall. Eng. 218, 354 (1960)

    Google Scholar 

  47. H. Schlichting, K. Gersten, Boundary-Layer Theory (Springer, 2016)

  48. D.J. Tritton, J. Fluid Mech. 6, 547 (1959)

    Article  ADS  Google Scholar 

  49. K. Ankit, A. Choudhury, C. Qin, S. Schulz, M. McDaniel, B. Nestler, Acta Mater. 61, 4245 (2013)

    Article  Google Scholar 

  50. R. Tönhardt, G. Amberg, J. Cryst. Growth 213, 161 (2000)

    Article  ADS  Google Scholar 

  51. M. Glicksman, K. Ankit, Metals 7, 547 (2017)

    Article  Google Scholar 

  52. M. Glicksman, K. Ankit, J. Mater. Sci. 53, 10955 (2018)

    Article  ADS  Google Scholar 

  53. M. Glicksman, K. Ankit, IOP Conf. Ser.: Mater. Sci. Eng. 529, 012027 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Ankit.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ankit, K., Glicksman, M.E. Growth competition during columnar solidification of seaweed microstructures. Eur. Phys. J. E 43, 14 (2020). https://doi.org/10.1140/epje/i2020-11940-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11940-5

Keywords

Navigation