Skip to main content

Advertisement

Log in

Toxicity of ayahuasca after 28 days daily exposure and effects on monoamines and brain-derived neurotrophic factor (BDNF) in brain of Wistar rats

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

A Correction to this article was published on 01 October 2021

This article has been updated

Abstract

Ayahuasca is a hallucinogenic beverage that affects the serotonergic system and have therapeutic potential for many diseases and disorders, including depression and drug addiction. The objectives of this study were to evaluate the potential toxic effects of ayahuasca on rats after chronic exposure, and the levels of monoamines, their metabolites and the brain-derived neurotrophic factor (BDNF) in the brain. Female and male rats were treated orally for 28 days with H2O (control), fluoxetine (FLX), a selective serotonin reuptake inhibitor antidepressant, or ayahuasca (Aya) at doses of 0.5X, 1X and 2X the ritualistic dose (7 to 10 animals/group). Clinical, hematological and macroscopic results showed that ayahuasca was safe to the rats. Behavior tests conducted one hour after the last treatment showed that male rats from the Aya1 group explored the open field central area less than the control group, and the number of entries in the central area compared to total locomotion was also significantly lower in this group and in the FLX group. The hippocampus was removed for BDNF analysis and the remaining brain was used for monoamine analysis by HPLC-FL. Serotonin levels were significantly higher than control only in the Aya2 female group, while a significant reduction of its metabolite 5-HIAA was observed in the FLX group. Dopamine levels were similar among the experimental groups, but the levels of its metabolite DOPAC increased significantly in the Aya1 and Aya2 groups compared to controls, especially in females, and the DOPAC/dopamine turnover was significantly higher in Aya2 group. The levels of HVA, another dopamine metabolite, did not change with the treatments compared to controls, but HVA/DOPAC ratio was significantly lower in all ayahuasca male groups. Norepinephrine was not detected in any brain sample, and the levels of its metabolite MHPG did not change significantly among the groups. BDNF levels in the hippocampus were significantly higher in the FLX and Aya2 female groups compared to controls when expressed in relation to the total brain weight. The mechanisms involved in the increase in serotonin, dopamine turnover and BDNF levels observed in ayahuasca treated animals should be further investigated in specific brain areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  • Ackenheil M (2001) Neurotransmitters and signal transduction processes in bipolar affective disorders: a synopsis. J Affect Disord 62(1–2):101–111

    Article  CAS  PubMed  Google Scholar 

  • Ahlem M, Ahlem H, Abdelmadjid B, Ali T, Abdelkrim T (2015) Anxiolytic effects of harmine injection on elevated plus- maze behavior in male Wistar rats. Glob Vet 15:605–612

    CAS  Google Scholar 

  • Andrade TS, Oliveira R, Grisolia CK, Domingues I, Zuben MVV, Caldas ED, Pic-Taylor A (2018) Exposure to ayahuasca induces developmental and behavioral alterations on early life stages of zebrafish. Chem Biol Interact 293:133–140

    Article  CAS  PubMed  Google Scholar 

  • Bouso JC, González D, Fondevila S, Cutchet M, Fernández X, Ribeiro Barbosa PC, Alcázar-Córcoles MÁ, Araújo WS, Barbano MJ, Fábregas JM, Riba J (2012) Personality, psychopathology, life attitudes and neuropsychological performance among ritual users of Ayahuasca: a longitudinal study. PLoS One 7e42421:1–13

    Google Scholar 

  • Brierley DI, Davidson C (2013) Harmine augments electrically evoked dopamine efflux in the nucleus accumbens shell. J Psychopharmacol 27:98–108

    Article  CAS  PubMed  Google Scholar 

  • Callaway JC, Raymon LP, Hearn WL, Mckenna DJ, Grob CS, Brito GS, Mash DC (1996) Quantitation of N,N-dimethyltryptamine and harmala alkaloids in human plasma after oral dosing with ayahuasca. J Anal Toxicol 20(6):492–497

    Article  CAS  PubMed  Google Scholar 

  • Cameron P, Benson CJ, Dunlap LE, Olson DE (2018) Effects of N, N-Dimethyltryptamine on rat behaviors relevant to anxiety and depression. ACS Chem Neurosci 9(7):1582–1590

    Article  CAS  PubMed  Google Scholar 

  • Cameron LP, Benson CJ, de Felice BC, Fiehn O, Olson DE (2019) Chronic, Intermittent Microdoses of the Psychedelic N,N-Dimethyltryptamine (DMT) Produce Positive Effects on Mood and Anxiety in Rodents. ACS Chem Neurosci 10(7):3261–3270

    Article  CAS  PubMed  Google Scholar 

  • Carbonaro TM, Gatch MB (2016) Neuro- pharmacology of N,N-dimethyltryptamine. Brain Res Bull 126:74–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlsson M, Carlsson A (1988) A regional study of sex differences in rat brain serotonin. Prog Neuro-Psychopharmacol Biol Psychiatry 12(1):53–61

    Article  CAS  Google Scholar 

  • Castro-Neto E, Da Cunha RH, Da Silveira DX, Yonamine M, Gouveia TLF, Cavalheiro EA, Amado D, Naffah-Mazzacoratti MG (2013) Changes in aminoacidergic and monoaminergic neurotransmission in the hippocampus and amygdala of rats after ayahuasca ingestion. World J Biol Chem 4(4):141–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Catena-Dell’Osso M, Rotella F, Dell’Osso A, Fagiolini A, Marazziti D (2013) Inflamation, serotonin and major depression. Curr Drug Targets 14:571–577

    Article  PubMed  Google Scholar 

  • Clapp P, Sanjiv V, Bhave Hoffman PL (2008) How adaptation of the brain to alcohol leads to dependence. A pharmacological perspective on the adaptation of the brain to alcohol Alcohol Res Health 31(4): 310–339

  • Dakic V,  Nascimento JM, Sartore RC,  Maciel RM, de Araujo DB, Ribeiro S,  Martins-de-Souza D, Rehen SK (2017) Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT. Sci Rep 7(1):12863.

  • da Motta LC, De Morais JA, Tavares ACAM, Vianna LMS, Mortari MR, Amorim RFB, Carvalho RR, Paumgartten FJR, Pic-Taylor A, Caldas ED (2018) Maternal and developmental toxicity of the hallucinogenic plant-based beverage ayahuasca in rats. Reprod Toxicol 77:1–10

    Article  CAS  Google Scholar 

  • de Almeida RN, Galvão ACM, da Silva FS et al (2019) Modulation of serum brain-derived Neurotrophic factor by a single dose of Ayahuasca: observation from a randomized controlled trial. Front Psychol 10:1234

    Article  PubMed  PubMed Central  Google Scholar 

  • Domínguez-Clavé E, Soler J, Elices M, Pascual JC, Álvarez E, Revenga MF, Friedlander P, Feildingg A, Ribac J (2016) Ayahuasca: pharmacology, neuroscience and therapeutic potential. Brain Res Bull 126(Pt 1):89–101

  • Domínguez-Clavé E, Soler J, Pascual JC, Elices M, Franquesa A, Valle M, Alvarez E, Riba J (2019) Ayahuasca improves emotion dysregulation in a community sample and in individuals with borderline-like traits. Psychopharmacology 236(2):573–580

    Article  PubMed  CAS  Google Scholar 

  • Donato F, de Gomes MG, Goes AT, Seus N, Alves D, Jesse CR, Savegnago L (2013) Involvement of the dopaminergic and serotonergic systems in the antidepressant-like effect caused by 4-phenyl-1-(phenylselanylmethyl)-1,2,3-triazole. Life Sci 93(9–11):393–400

    Article  CAS  PubMed  Google Scholar 

  • dos Santos RG, Bouso JC, Hallak JEC (2017) Ayahuasca, dimethyltryptamine, and psychosis: a systematic review of human studies. Ther Adv Psychopharmacol 7(4):141–157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duman RS, Aghajanian GK, Sanacora G, Krystal JH (2016) Synaptic plasticity and depression: new insights from stress and rapid-acting depressants. Nat Med 22(3):238–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farzin D,  Mansouri N (2006) Antidepressant-like effect of harmane and other β-carbolines in the mouse forced swim test. Eur Neuropsychopharm 16 (5):324-328

  • Fernandes BS, Gama CS, Ceresér KM, Yatham LN, Fries GR, Colpo G, De Lucena D, Kunz M, Gomes FA, Kapczinski F (2011) Brain-derived neurotrophic factor as a state-marker of mood episodes in bipolar disorders: a systematic review and meta-regression analysis. J Psychiatr Res 45(8):995–1004

    Article  PubMed  Google Scholar 

  • Fonseca BM, Rodrigues M, Cristóvão AC, Gonçalves D, Fortuna A, Bernardino L, Falcão A, Alves G (2017) Determination of catecholamines and endogenous related compounds in rat brain tissue exploring their native fluorescence and liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 1049–1050:51–59

    Article  PubMed  CAS  Google Scholar 

  • Fortunato JJ, Réus GZ, Kirsch TR, Stringari RB, Stertz L, Kapczinski F, Pinto JP, Hallak JE, Zuardi AW, Crippa JA, Quevedo J (2009) Acute harmine administration induces antidepressive-like effects and increases BDNF levels in the rat hippocampus. Prog Neuro-Psychopharmacol Biol Psychiatry 33(8):1425–1430

    Article  CAS  Google Scholar 

  • Fortunato JJ, Réus GZ, Kirsch TR, Stringari RB, Fries GR, Kapczinski F, Hallak JE, Zuardi AW, Crippa JA, Quevedo J (2010a) Chronic administration of harmine elicits antidepressant-like effects and increases BDNF levels in rat hippocampus. J Neural Transm 117(10):1131–1137

    Article  CAS  PubMed  Google Scholar 

  • Fortunato JJ, Réus GZ, Kirsch TR, Stringari RB, Fries GR, Kapczinski F, Hallak JE, Zuardi AW, Crippa JA, Quevedo J (2010b) Effects of β-carboline harmine on behavioral and physiological parameters observed in the chronic mild stress model: further evidence of antidepressant properties. Brain Res Bull 81(4–5):491–496

    Article  CAS  PubMed  Google Scholar 

  • Frecska E, Bokor P, Winkelman M (2016) The therapeutic potentials of ayahuasca: possible effects against various diseases of civilization. Front Pharmacol 7:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glavin GB (1985) Stress and brain noradrenaline: a review. Neurosci Biobehav Rev 9(2):233–243

    Article  CAS  PubMed  Google Scholar 

  • Haenisch B, Bönisch H (2011) Depression and antidepressants: insights from knockout of dopamine, serotonin or noradrenaline re-uptake transporters. Pharmacol Ther 129(3):352–368

    Article  CAS  PubMed  Google Scholar 

  • Hamill J, Hallak J, Dursun SM, Baker G (2019) Ayahuasca: psychological and physiologic effects, pharmacology and potential uses in addiction and mental illness. Curr Neuropharmacol 17(2):108–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Health Canada, Letter of Exemption n. 17-106067-547, June 5th, 2017, Ottawa, Canada

  • Heinz AJ, Beck A, Meyer-Lindenberg A, Sterzer P, Heinz A (2011) Cognitive and neurobiological mechanisms of alcohol-related aggression. Nat Rev Neurosci 12(7):400–413

    Article  CAS  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iurlo M, Leone MG, Schilström B, Linnér L, Nomikos GG, Hertel P, Silvestrini B, Svensson TH (2001) Effects of harmine on dopamine output and metabolism in rat striatum: role of monoamine oxidase-a inhibition. Psychopharmacology 159:98–104

    Article  CAS  PubMed  Google Scholar 

  • Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature. 455(7215):894–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labate BC, Feeney K (2012) Ayahuasca and the process of regulation in Brazil and internationally: implications and challenges. Int J Drug Policy 23(2):154–161

    Article  PubMed  Google Scholar 

  • Lakshmana MK, Raju TR (1997) An isocratic assay for norepinephrine, dopamine, and 5-hydroxytryptamine using their native fluorescence by high-performance liquid chromatography with fluorescence detection in discrete brain areas of rat. Anal Biochem 246(2):166–170

    Article  CAS  PubMed  Google Scholar 

  • LeMarquand D, Pihl RO, Benkelfat C (1994) Serotonin and alcohol intake, abuse, and dependence: findings of animal studies. Biol Psychiatry 36(6):395–421

    Article  CAS  PubMed  Google Scholar 

  • Li G, Jing P, Liu Z, Li Z, Ma H, Tu W, Zhang W, Zhuo C (2017) Beneficial effect of fluoxetine treatment against psychological stress is mediated by increasing BDNF expression in selected brain areas. Oncotarget 41(8):69527–69537

    Article  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20(24):9104–9110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manji HK, Drevets WP, Charmey DS (2001) The cellular neurobiology of depression. Nat Med 7(5):541–547

    Article  CAS  PubMed  Google Scholar 

  • Martínez MA, Ares I, Rodríguez JL, Martínez M, Martínez-Larrañaga M-R, Anadón A (2018) Neurotransmitter changes in rat brain regions following glyphosate exposure. Environ Res 161:212–219

    Article  PubMed  CAS  Google Scholar 

  • Mckenna DJ (2004) Clinical investigations of the therapeutic potential of ayahuasca: rationale and regulatory challenges. Pharmacol Ther 102(2):111–129

    Article  CAS  PubMed  Google Scholar 

  • Melo Junior W, Souza Filho J, Grisolia CG, Caldas ED, Pic-Taylor A (2016) Genotoxic evaluations in Wistar rats of the hallucinogenic plant extract ayahuasca. Int J Phytomed 8:249–225

    Google Scholar 

  • Morales-García JA,  de la Fuente Revenga M, Alonso-Gil S, Rodríguez-Franco MI,  Feilding A, Perez-Castillo A,  Riba J (2017) The alkaloids of Banisteriopsis caapi, the plant source of the Amazonian hallucinogen Ayahuasca, stimulate adult neurogenesis in vitro. Sci Rep 7(1):5309

  • Moret C, Briley M (2011) The importance of norepinephrine in depression. Neuropsychiatr Dis Treat 7(Suppl 1):9–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller CP, Homberg JR (2015) Serotonin revisited. Behav Brain Res 277:1–2

    Article  PubMed  Google Scholar 

  • National Research Council (US) (2011) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th edition. Washington (DC): National Academies Press (US). Available from: https://www.ncbi.nlm.nih.gov/books/NBK54050/

  • Oliveira-Lima AJ, Santos R, Hollais AW, Gerardi-Junior CA, Baldaia MA, Wuo-Silva R, Yokoyama TS, Costa JL, Malpezzi-Marinho ELA, Ribeiro-Barbosa PC, Berro LF, Frussa-Filho R, Marinho EAV (2015) Effects of ayahuasca on the development of ethanol-induced behavioral sensitization and on a post-sensitization treatment in mice. Physiol Behav 142:28–36

    Article  CAS  PubMed  Google Scholar 

  • Osoŕio FL, Sanches RF, Macedo LR, dos Santos RG, Maia-de-Oliveira JP, Wichert-Ana L, de Araujo DB, Riba J, Crippa JA, Hallak JE (2015) Antidepressant effects of a single dose of ayahuasca in patients with recurrent depression: a preliminary report. Rev Bras Psiquiatr 37:13–20

    Article  Google Scholar 

  • Palhano-Fontes F, Barreto D, Onias H, Andrade KC, Novaes MM, Pessoa JA, Mota-Rolim AS, Osório FL, Sanches R, Dos Santos RG, Tófoli LF, De Oliveira SG, Yonamine M, Riba J, Santos FR, Silva-Junior AA, Alchieri JC, Galvão-Coelho NL, Lobão-Soares B, Hallak JEC, Arcoverde E, Maia-De-Oliveira JP, Araújo DB (2018) Rapid antidepressant effects of the psychedelic ayahuasca in treatment-resistant depression: a randomized placebo controlled trial. Psychol Med 1-9

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167

    Article  CAS  PubMed  Google Scholar 

  • Peng GJ, Tian JS, Gao XX, Zhou YZ, Qin XM (2015) Research on the pathological mechanism and drug treatment mechanism of depression. Curr Neuropharmacol 13(4):514–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pic-Taylor A, Da Motta LG, De Morais JA, Melo Junior W, Santos AFA, Campos LA, Mortari MR, Von Zuben MV, Caldas ED (2015) Behavioural and neurotoxic effects of ayahuasca infusion (Banisteriopsis caapi and Psychotria viridis) in female Wistar rat. Behav Process 118:102–110

    Article  Google Scholar 

  • Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxietry-like behaviours: a review. Eur J Pharmacol 463(1–3):3–33

    Article  CAS  PubMed  Google Scholar 

  • Qu SJ, Wang GF, Duan WH, Yau SY, Zuo JP, Tan CH, Zhu D (2011) Tryptamine derivatives as novel non-nucleosidic inhibitors. Bioorg Med Chem 19(10):3120–3127

    Article  CAS  PubMed  Google Scholar 

  • Riba J (2003) Human pharmacology of Ayahuasca: subjective and cardiovascular effects, monoamine metabolite excretion, and pharmacokinetics. J Pharmacol Exp Ther 306(1):73–83

    Article  CAS  PubMed  Google Scholar 

  • Sanches RF, de Lima OF, Dos Santos RG, Macedo LR, Maia-de-Oliveira JP, Wichert-Ana L, de Araujo DB, Riba J, Crippa JA, Hallak JE (2016) Antidepressant effects of a single dose of ayahuasca in patients with recurrent depression: a SPECT study. J Clin Psychopharmacol 36(1):77–81

    Article  CAS  PubMed  Google Scholar 

  • Santos AFA, Vieira ALS, Pic-Taylor A, Caldas ED (2017) Reproductive effects of the psychoactive beverage ayahuasca in male Wistar rats after chronic exposure. Braz J Pharmacognosy 27(3):353–360

    Article  CAS  Google Scholar 

  • Saylor RA, Hersey M, West A, Buchanan AM, Berger SN, Nijhout HF, Reed MC, Best J, Hashemi P (2019) In vivo hippocampal serotonin dynamics in male and female mice: determining effects of acute Escitalopram using fast scan cyclic voltammetry. Front Neurosci 13:362

    Article  PubMed  PubMed Central  Google Scholar 

  • Szabo A, Kovacs A, Riba J, Djurovic S, Rajnavolgyi E, Frecska E (2016) The Endogenous Hallucinogen and Trace Amine N,N-Dimethyltryptamine (DMT) Displays Potent Protective Effects against Hypoxia via Sigma-1 Receptor Activation in Human Primary iPSC-Derived Cortical Neurons and Microglia-Like Immune Cells. Front Neurosci 10:423

    PubMed  PubMed Central  Google Scholar 

  • Vaidya VA, Marek GJ, Aghajanian GK, Duman RS (1997) 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J Neurosci 17(8):2785–2795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Bohlen Und Halbach O, von Bohlen Und Halbach V (2018) BDNF effects on dendritic spine morphology and hippocampal function. Cell Tissue Res 373:729

    Article  CAS  Google Scholar 

  • Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behaviour in rodents. Nat Protoc 2:322–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work received the financial support of the Federal District Research Foundation (FAP-DF; Grant 0193.000.913/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloisa Dutra Caldas.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colaço, C.S., Alves, S.S., Nolli, L.M. et al. Toxicity of ayahuasca after 28 days daily exposure and effects on monoamines and brain-derived neurotrophic factor (BDNF) in brain of Wistar rats. Metab Brain Dis 35, 739–751 (2020). https://doi.org/10.1007/s11011-020-00547-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-020-00547-w

Keywords

Navigation