Skip to main content
Log in

Classification of analytics, sensorics, and bioanalytics with polyelectrolyte multilayer capsules

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Polyelectrolyte multilayer (PEM) capsules, constructed by LbL (layer-by-layer)-adsorbing polymers on sacrificial templates, have become important carriers due to multifunctionality of materials adsorbed on their surface or encapsulated into their interior. They have been also been used broadly used as analytical tools. Chronologically and traditionally, chemical analytics has been developed first, which has long been synonymous with all analytics. But it is not the only development. To the best of our knowledge, a summary of all advances including their classification is not available to date. Here, we classify analytics, sensorics, and biosensorics functionalities implemented with polyelectrolyte multilayer capsules and coated particles according to the respective stimuli and application areas. In this classification, three distinct categories are identified: (I) chemical analytics (pH; K+, Na+, and Pb2+ ion; oxygen; and hydrogen peroxide sensors and chemical sensing with surface-enhanced Raman scattering (SERS)); (II) physical sensorics (temperature, mechanical properties and forces, and osmotic pressure); and (III) biosensorics and bioanalytics (fluorescence, glucose, urea, and protease biosensing and theranostics). In addition to this classification, we discuss also principles of detection using the above-mentioned stimuli. These application areas are expected to grow further, but the classification provided here should help (a) to realize the wealth of already available analytical and bioanalytical tools developed with capsules using inputs of chemical, physical, and biological stimuli and (b) to position future developments in their respective fields according to employed stimuli and application areas.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Donath E, Sukhorukov GB, Caruso F, Davis SA, Mohwald H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed. 1998;37:2202–5.

    CAS  Google Scholar 

  2. Caruso F, Caruso RA, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science. 1998;282:1111–4.

    CAS  PubMed  Google Scholar 

  3. Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science. 1997;277:1232–7.

    CAS  Google Scholar 

  4. Picart C, Mutterer J, Richert L, Luo Y, Prestwich GD, Schaaf P, et al. Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers. Proc Natl Acad Sci U S A. 2002;99:12531–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Parakhonskiy BV, Yashchenok AM, Konrad M, Skirtach AG. Colloidal micro- and nano-particles as templates for polyelectrolyte multilayer capsules. Adv Colloid Interf Sci. 2014;207:253–64.

    CAS  Google Scholar 

  6. Cui J, van Koeverden MP, Muellner M, Kempe K, Caruso F. Emerging methods for the fabrication of polymer capsules. Adv Colloid Interf Sci. 2014;207:14–31.

    CAS  Google Scholar 

  7. Wang Q, Schlenoff JB. Single- and multicompartment hollow polyelectrolyte complex microcapsules by one-step spraying. Adv Mater. 2015;27:2077–82.

    PubMed  Google Scholar 

  8. Pan HM, Beyer S, Zhu QD, Trau D. Inwards interweaving of polymeric layers within hydrogels: assembly of spherical multi-shells with discrete porosity differences. Adv Funct Mater. 2013;23:5108–15.

    CAS  Google Scholar 

  9. Volodkin D. CaCO3 templated micro-beads and -capsules for bioapplications. Adv Colloid Interf Sci. 2014;207:306–24.

    CAS  Google Scholar 

  10. Volodkin DV, Petrov AI, Prevot M, Sukhorukov GB. Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation. Langmuir. 2004;20:3398–406.

    CAS  PubMed  Google Scholar 

  11. Yashchenok AM, Delcea M, Videnova K, Jares-Erijman EA, Jovin TM, Konrad M, et al. Enzyme reaction in the pores of CaCO3 particles upon ultrasound disruption of attached substrate-filled liposomes. Angew Chem Int Ed. 2010;49:8116–20.

    CAS  Google Scholar 

  12. Parakhonskiy BV, Haase A, Antolini R. Sub-micrometer Vaterite containers: synthesis, substance loading, and release. Angew Chem Int Ed. 2012;51:1195–7.

    CAS  Google Scholar 

  13. Parakhonskiy BV, Yashchenok AM, Donatan S, Volodkin DV, Tessarolo F, Antolini R, et al. Macromolecule loading into spherical, elliptical, star-like and cubic calcium carbonate carriers. Chemphyschem. 2014;15:2817–22.

    CAS  PubMed  Google Scholar 

  14. Delcea M, Madaboosi N, Yashchenok AM, Subedi P, Volodkin DV, De Geest BG, et al. Anisotropic multicompartment micro- and nano-capsules produced via embedding into biocompatible PLL/HA films. Chem Commun. 2011;47:2098–100.

    CAS  Google Scholar 

  15. Kohler D, Madaboosi N, Delcea M, Schmidt S, De Geest BG, Volodkin DV, et al. Patchiness of embedded particles and film stiffness control through concentration of gold nanoparticles. Adv Mater. 2012;24:1095–100.

    CAS  PubMed  Google Scholar 

  16. Kozlovskaya V, Xue B, Kharlampieva E. Shape-adaptable polymeric particles for controlled delivery. Macromolecules. 2016;49:8373–86.

    CAS  Google Scholar 

  17. Feoktistova N, Rose J, Prokopovic VZ, Vikulina AS, Skirtach A, Volodkin D. Controlling the Vaterite CaCO3 crystal poresDesign of Tailor-Made Polymer Based Microcapsules by Hard Templating. Langmuir. 2016;32:4229–38.

    CAS  PubMed  Google Scholar 

  18. Delcea M, Moehwald H, Skirtach AG. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Drug Deliv Rev. 2011;63:730–47.

    CAS  PubMed  Google Scholar 

  19. Sukhishvili SA. Responsive polymer films and capsules via layer-by-layer assembly. Adv Drug Deliv Rev. 2005;10:37–44.

    CAS  Google Scholar 

  20. Skirtach AG, Yashchenok AM, Moehwald H. Encapsulation, release and applications of LbL polyelectrolyte multilayer capsules. Chem Commun. 2011;47:12736–46.

    CAS  Google Scholar 

  21. Musyanovych A, Landfester K. Polymer micro- and Nanocapsules as biological carriers with multifunctional properties. Macromol Biosci. 2014;14:458–77.

    CAS  PubMed  Google Scholar 

  22. Motornov M, Roiter Y, Tokarev I, Minko S. Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci. 2010;35:174–211.

    CAS  Google Scholar 

  23. del Mercato LL, Ferraro MM, Baldassarre F, Mancarella S, Greco V, Rinaldi R, et al. Biological applications of LbL multilayer capsules: from drug delivery to sensing. Adv Colloid Interf Sci. 2014;207:139–54.

    Google Scholar 

  24. McShane MJ, Brown JQ, Guice KB, Lvov YM. Polyelectrolyte microshells as carriers for fluorescent sensors: loading and sensing properties of a ruthenium-based oxygen indicator. J Nanosci Nanotechnol. 2002;2:411–6.

    CAS  PubMed  Google Scholar 

  25. Brown JQ, McShane MJ. Core-referenced ratiometric fluorescent potassium ion sensors using self-assembled ultrathin films on europium nanoparticles. IEEE Sensors J. 2005;5:1197–205.

    CAS  Google Scholar 

  26. Brown JQ, McShane MJ. Nanoengineered polyelectrolyte micro- and nano-capsules as fluorescent potassium ion sensors. IEEE Eng Med Biol Mag. 2003;22:118–23.

    PubMed  Google Scholar 

  27. Duchesne TA, Brown JQ, Guice KB, Lvov YM, McShane MJ. Encapsulation and stability properties of nanoengineered polyelectrolyte capsules for use as fluorescent sensors. Sens Mater. 2002;14:293–308.

    CAS  Google Scholar 

  28. Zhao Q, Rong X, Chen L, Ma H, Tao G. Layer-by-layer self-assembly xylenol orange functionalized CdSe/CdS quantum dots as a turn-on fluorescence lead ion sensor. Talanta. 2013;114:110–6.

    CAS  PubMed  Google Scholar 

  29. Xiang Y, Xu XY, He DF, Li M, Liang LB, Yu XF. Fabrication of rare-earth/quantum-dot nanocomposites for color-tunable sensing applications. J Nanopart Res. 2011;13:525–31.

    CAS  Google Scholar 

  30. Kreft O, Javier AM, Sukhorukov GB, Parak WJ. Polymer microcapsules as mobile local pH-sensors. J Mater Chem. 2007;17:4471–6.

    CAS  Google Scholar 

  31. Song XX, Li HB, Tong WJ, Gao CY. Fabrication of triple-labeled polyelectrolyte microcapsules for localized ratiometric pH sensing. J Colloid Interface Sci. 2014;416:252–7.

    CAS  PubMed  Google Scholar 

  32. Rivera-Gil P, Nazarenus M, Ashraf S, Parak WJ. pH-sensitive capsules as intracellular optical reporters for monitoring lysosomal pH changes upon stimulation. Small. 2012;8:943–8.

    CAS  Google Scholar 

  33. Reibetanz U, Halozan D, Brumen M, Donath E. Flow cytometry of HEK 293T cells interacting with polyelectrolyte multilayer capsules containing fluorescein-labeled poly(acrylic acid) as a pH sensor. Biomacromolecules. 2007;8:1927–33.

    CAS  PubMed  Google Scholar 

  34. Kharlampieva E, Kozlovskaya V, Zavgorodnya O, Lilly GD, Kotov NA, Tsukruk VV. pH-responsive photoluminescent LbL hydrogels with confined quantum dots. Soft Matter. 2010;6:800–7.

    CAS  Google Scholar 

  35. Drachuk I, Shchepelina O, Lisunova M, Harbaugh S, Kelley-Loughnane N, Stone M, et al. pH-responsive layer-by-layer nanoshells for direct regulation of cell activity. ACS Nano. 2012;6:4266–78.

    CAS  PubMed  Google Scholar 

  36. del Mercato LL, Abbasi AZ, Ochs M, Parak WJ. Multiplexed sensing of ions with barcoded polyelectrolyte capsules. ACS Nano. 2011;5:9668–74.

    PubMed  Google Scholar 

  37. Xia JH, Wang XY, Zhu SX, Liu L, Li LD. Gold Nanocluster-decorated nanocomposites with enhanced emission and reactive oxygen species generation. ACS Appl Mater Interfaces. 2019;11:7369–78.

    CAS  PubMed  Google Scholar 

  38. De Acha N, Elosua C, Matias I, Arregui FJ. Luminescence-based optical sensors fabricated by means of the layer-by-layer nano-assembly technique. Sensors (Basel). 2017;17:E2826.

    Google Scholar 

  39. Kazakova LI, Shabarchina LI, Anastasova S, Pavlov AM, Vadgama P, Skirtach AG, et al. Chemosensors and biosensors based on polyelectrolyte microcapsules containing fluorescent dyes and enzymes. Anal Bioanal Chem. 2013;405:1559–68.

    CAS  PubMed  Google Scholar 

  40. Biswas A, Banerjee S, Gart EV, Nagaraja AT, McShane MJ. Gold nanocluster containing polymeric microcapsules for intracellular ratiometric fluorescence biosensing. ACS Omega. 2017;2:2499–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang X, Wang S, Wang Y, He Y, Chai Y, Yuan R. Stimuli-responsive DNA microcapsules for SERS sensing of trace microRNA. ACS Appl Mater Interfaces. 2018;10:12491–6.

    CAS  PubMed  Google Scholar 

  42. Yashchenok AM, Borisova D, Parakhonskiy BV, Masic A, Pinchasik B-E, Moehwald H, et al. Nanoplasmonic smooth silica versus porous calcium carbonate bead biosensors for detection of biomarkers. Ann Phys (Berlin). 2012;524:723–32.

    CAS  Google Scholar 

  43. Yashchenok A, Masic A, Gorin D, Shim BS, Kotov NA, Fratzl P, et al. Nanoengineered colloidal probes for Raman-based detection of biomolecules inside living cells. Small. 2013;9:351–6.

    CAS  PubMed  Google Scholar 

  44. Hamon C, Liz-Marzan LM. Colloidal design of plasmonic sensors based on surface enhanced Raman scattering. J Colloid Interface Sci. 2018;512:834–43.

    CAS  PubMed  Google Scholar 

  45. Parakhonskiy BV, Abalymov A, Ivanova A, Khalenkow D, Skirtach AG. Magnetic and silver nanoparticle functionalized calcium carbonate particles - dual functionality of versatile, movable delivery carriers which can surface-enhance Raman signals. J Appl Phys. 2019;126:203102.

    Google Scholar 

  46. Stetciura IY, Yashchenok A, Masic A, Lyubin EV, Inozemtseva OA, Drozdova MG, et al. Composite SERS-based satellites navigated by optical tweezers for single cell analysis. Analyst. 2015;140:4981–6.

    CAS  PubMed  Google Scholar 

  47. Quinn A, You Y-H, McShane MJ. Hydrogel microdomain encapsulation of stable functionalized silver nanoparticles for SERS pH and urea sensing. Sensors (Basel). 2019;19:3521.

    CAS  Google Scholar 

  48. You YH, Schechinger M, Locke A, Cote G, McShane M (2018) Nanoengineered capsules for selective SERS analysis of biological samples. Proc. SPIE 10501:UNSP 1050103.

  49. Lengert E, Parakhonskiy B, Khalenkow D, Zecic A, Vangheel M, Moreno JMM, et al. Laser-induced remote release in vivo in C. elegans from novel silver nanoparticles-alginate hydrogel shells. Nanoscale. 2018;10:17249–56.

    CAS  PubMed  Google Scholar 

  50. Alorabi AQ, Tarn MD, Thomas M, Paunov VN, Pamme N. Microcapsules as assay compartments formed through layer-by-layer deposition. Anal Methods. 2018;10:5335–40.

    CAS  Google Scholar 

  51. Montjoy DG, Bahng JH, Eskafi A, Hou H, Kotov NA. Omnidispersible hedgehog particles with multilayer coatings for multiplexed biosensing. J Am Chem Soc. 2018;140:7835–45.

    CAS  PubMed  Google Scholar 

  52. Huang JY, de Nijs B, Cormier S, Sokolowski K, Grys DB, Readman CA, et al. Plasmon-induced optical control over dithionite-mediated chemical redox reactions. Faraday Discuss. 2019;214:455–63.

    CAS  PubMed  Google Scholar 

  53. Mariani S, Robbiano V, Strambini LM, Debrassi A, Egri G, Dahne L, et al. Layer-by-layer biofunctionalization of nanostructured porous silicon for high-sensitivity and high-selectivity label-free affinity biosensing. Nat Commun. 2018;9:13.

    Google Scholar 

  54. Yashchenok AM, Bratashov DN, Gorin DA, Lomova MV, Pavlov AM, Sapelkin AV, et al. Carbon nanotubes on polymeric microcapsules: free-standing structures and point-wise laser openings. Adv Funct Mater. 2010;20:3136–42.

    CAS  Google Scholar 

  55. Zyuzin MV, Honold T, Carregal-Romero S, Kantner K, Karg M, Parak WJ. Influence of temperature on the colloidal stability of polymer-coated gold nanoparticles in cell culture media. Small. 2016;12:1723–31.

    CAS  PubMed  Google Scholar 

  56. Timin AS, Gao H, Voronin DV, Gorin DA, Sukhorukov GB. Inorganic/organic multilayer capsule composition for improved functionality and external triggering. Adv Mater Interfaces. 2017;4:1600338.

    Google Scholar 

  57. Saveleva MS, Eftekhari K, Abalymov A, Douglas TEL, Volodkin D, Parakhonskiy BV, et al. Hierarchy of hybrid materials - the place of inorganics-in-organics in it, their composition and applications. Front Chem. 2019;7:179.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sung C, Vidyasagar A, Hearn K, Lutkenhaus JL. Temperature-triggered shape-transformations in layer-by-layer microtubes. J Mater Chem B. 2014;2:2088–92.

    CAS  PubMed  Google Scholar 

  59. Skirtach AG, Antipov AA, Shchukin DG, Sukhorukov GB. Remote activation of capsules containing Ag nanoparticles and IR dye by laser light. Langmuir. 2004;20:6988–92.

    CAS  PubMed  Google Scholar 

  60. Radt B, Smith TA, Caruso F. Optically addressable nanostructured capsules. Adv Mater. 2004;16:2184–9.

    CAS  Google Scholar 

  61. Angelatos AS, Radt B, Caruso F. Light-responsive polyelectrolyte/gold nanoparticle microcapsules. J Phys Chem B. 2005;109:3071–6.

    CAS  PubMed  Google Scholar 

  62. Parakhonskiy BV, Gorin DA, Baumler H, Skirtach AG. Temperature rise around nanoparticles. J Therm Anal Calorim. 2017;127:895–904.

    CAS  Google Scholar 

  63. Parakhonskiy BV, Parak WJ, Volodkin D, Skirtach AG. Hybrids of polymeric capsules, lipids, and nanoparticles: thermodynamics and temperature rise at the nanoscale and emerging applications. Langmuir. 2019;35:8574–83.

    CAS  PubMed  Google Scholar 

  64. Kohler K, Shchukin DG, Mohwald H, Sukhorukov GB. Thermal behavior of polyelectrolyte multilayer microcapsules. 1. The effect of odd and even layer number. J Phys Chem B. 2005;39:18250–9.

  65. Skirtach AG, Dejugnat C, Braun D, Susha AS, Rogach AL, Parak WJ, et al. The role of metal nanoparticles in remote release of encapsulated materials. Nano Lett. 2005;5:1371–7.

    CAS  PubMed  Google Scholar 

  66. Parakhonskiy BV, Bedard MF, Bukreeva TV, Sukhorukov GB, Moehwald H, Skirtach AG. Nanoparticles on polyelectrolytes at low concentration: controlling concentration and size. J Phys Chem C. 2010;114:1996–2002.

    CAS  Google Scholar 

  67. Bedard MF, Braun D, Sukhorukov GB, Skirtach AG. Toward self-assembly of nanoparticles on polymeric microshells: near-IR release and permeability. ACS Nano. 2008;2:1807–16.

    CAS  PubMed  Google Scholar 

  68. Rastinehad AR, Anastos H, Wajswol E, Winoker JS, Sfakianos JP, Doppalapudi SK, et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci U S A. 2019;116:18590–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Feeney MJ, Thomas SW. Combining top-down and bottom-up with photodegradable layer-by-layer films. Langmuir. 2019;35:13791–804.

    CAS  PubMed  Google Scholar 

  70. Borges J, Rodrigues LC, Reis RL, Mano JF. Layer-by-layer assembly of light-responsive polymeric multilayer systems. Adv Funct Mater. 2014;24:5624–48.

    CAS  Google Scholar 

  71. Dubreuil F, Elsner N, Fery A. Elastic properties of polyelectrolyte capsules studied by atomic-force microscopy and RICM. Eur Phys J E Soft Matter. 2003;12(2):215–21.

    CAS  PubMed  Google Scholar 

  72. Lulevich VV, Radtchenko IL, Sukhorukov GB, Vinogradova OI. Mechanical properties of polyelectrolyte microcapsules filled with a neutral polymer. Macromolecules. 2003;36:2832–7.

    CAS  Google Scholar 

  73. Lavalle P, Boulmedais F, Schaaf P, Jierry L. Soft-mechanochemistry: mechanochemistry inspired by nature. Langmuir. 2016;32:7265–76.

    CAS  PubMed  Google Scholar 

  74. Fernandes PAL, Delcea M, Skirtach AG, Moehwald H, Fery A. Quantification of release from microcapsules upon mechanical deformation with AFM. Soft Matter. 2010;6:1879–83.

    CAS  Google Scholar 

  75. Delcea M, Schmidt S, Palankar R, Fernandes PAL, Fery A, Moehwald H, et al. Mechanobiology: correlation between mechanical stability of microcapsules studied by AFM and impact of cell-induced stresses. Small. 2010;6:2858–62.

    CAS  PubMed  Google Scholar 

  76. Kolmakov GV, Schaefer A, Aranson I, Balazs AC. Designing mechano-responsive microcapsules that undergo self-propelled motion. Soft Matter. 2012;8:180–90.

    CAS  Google Scholar 

  77. Kolesnikova TA, Skirtach AG, Moehwald H. Red blood cells and polyelectrolyte multilayer capsules: natural carriers versus polymer-based drug delivery vehicles. Expert Opin Drug Deliv. 2013;10:47–58.

    CAS  PubMed  Google Scholar 

  78. Anselmo AC, Mitragotri S. Impact of particle elasticity on particle-based drug delivery systems. Adv Drug Deliv Rev. 2017;108:51–67.

    CAS  PubMed  Google Scholar 

  79. Bedard MF, Munoz-Javier A, Mueller R, del Pino P, Fery A, Parak WJ, et al. On the mechanical stability of polymeric microcontainers functionalized with nanoparticles. Soft Matter. 2009;5:148–55.

    CAS  Google Scholar 

  80. Skorb EV, Volkova AV, Andreeva DV. Layer-by-layer approach for design of chemical sensors and biosensors. Curr Org Chem. 2015;19:1097–116.

    CAS  Google Scholar 

  81. Sato K, Takahashi S, J-i A. Layer-by-layer thin films and microcapsules for biosensors and controlled release. Anal Sci. 2012;28:929–38.

    CAS  PubMed  Google Scholar 

  82. Nolte M, Doench I, Fery A. Freestanding polyelectrolyte films as sensors for osmotic pressure. ChemPhysChem. 2006;7:1985–9.

    CAS  PubMed  Google Scholar 

  83. Estillore NC, Advincula RC. Stimuli-responsive binary mixed polymer brushes and free-standing films by LbL-SIP. Langmuir. 2011;27:5997–6008.

    CAS  PubMed  Google Scholar 

  84. Knoche S, Kierfeld J. Osmotic buckling of spherical capsules. Soft Matter. 2014;10:8358–69.

    CAS  PubMed  Google Scholar 

  85. Schmidt S, Fernandes PAL, De Geest BG, Delcea M, Skirtach AG, Moehwald H, et al. Release properties of pressurized microgel templated capsules. Adv Funct Mater. 2011;21:1411–8.

    CAS  Google Scholar 

  86. Bedard MF, De Geest BG, Moehwald H, Sukhorukov GB, Skirtach AG. Direction specific release from giant microgel-templated polyelectrolyte microcontainers. Soft Matter. 2009;5:3927–31.

    CAS  Google Scholar 

  87. Gupta N, Kozlovskaya V, Dolmat M, Kharlampieva E. Shape recovery of spherical hydrogen-bonded multilayer capsules after osmotically induced deformation. Langmuir. 2019;35:10910–9.

    CAS  PubMed  Google Scholar 

  88. Zhang R, Koehler K, Kreft O, Skirtach A, Moehwald H, Sukhorukov G. Salt-induced fusion of microcapsules of polyelectrolytes. Soft Matter. 2010;6:4742–7.

    CAS  Google Scholar 

  89. Pechenkin MA, Mohwald H, Volodkin DV. pH- and salt-mediated response of layer-by-layer assembled PSS/PAH microcapsules: fusion and polymer exchange. Soft Matter. 2012;8:8659–65.

    CAS  Google Scholar 

  90. Wu YJ, Frueh J, Si TY, Moehwald H, He Q. Laser-induced fast fusion of gold nanoparticle-modified polyelectrolyte microcapsules. Phys Chem Chem Phys. 2015;17:3281–6.

    CAS  PubMed  Google Scholar 

  91. McShane M, Ritter D. Microcapsules as optical biosensors. J Mater Chem. 2010;20:8189–93.

    CAS  Google Scholar 

  92. Kantner K, Rejman J, Kraft KVL, Soliman MG, Zyuzin MV, Escudero A, et al. Laterally and temporally controlled intracellular staining by light-triggered release of encapsulated fluorescent markers. Chemistry. 2018;24:2098–102.

    CAS  PubMed  Google Scholar 

  93. Manna U, Zayas-Gonzalez YM, Carlton RJ, Caruso F, Abbott NL, Lynn DM. Liquid crystal chemical sensors that cells can Wear. Angew Chem Int Ed. 2013;52:14011–5.

    CAS  Google Scholar 

  94. Sivakumar S, Wark KL, Gupta JK, Abbott NL, Caruso F. Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses. Adv Funct Mater. 2009;19:2260–5.

    CAS  Google Scholar 

  95. Jia Y, Li J. Molecular assemblies of biomimetic microcapsules. Langmuir. 2019;35:8557–64.

    CAS  PubMed  Google Scholar 

  96. Liang K, Gunawan ST, Richardson JJ, Such GK, Cui JW, Caruso F. Endocytic capsule sensors for probing cellular internalization. Adv Healthc Mater. 2014;3:1551–4.

    CAS  PubMed  Google Scholar 

  97. Yuan Y, Gao C, Wang D, Zhou C, Zhu B, He Q. Janus-micromotor-based on-off luminescence sensor for active TNT detection. Beilstein J Nanotechnol. 2019;10:1324–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Liang XL, Trentle M, Kozlovskaya V, Kharlampieva E, Bonizzoni M. Carbohydrate sensing using water-soluble poly(methacrylic acid)-co-3-(acrylamido)phenylboronic acid copolymer. ACS Appl Polym Mater. 2019;1:1341–9.

    CAS  Google Scholar 

  99. Ermakov A, Lim SH, Gorelik S, Kauling AP, de Oliveira RVB, Neto AHC, et al. Polyelectrolyte-graphene oxide multilayer composites for array of microchambers which are mechanically robust and responsive to NIR light. Macromol Rapid Commun. 2019;40:1700868.

    Google Scholar 

  100. Antipina MN, Kiryukhin MV, Chong K, Low HY, Sukhorukov GB. Patterned microcontainers as novel functional elements for mu TAS and LOC. Lab Chip. 2009;9:1472–5.

    CAS  PubMed  Google Scholar 

  101. Kaufman G, Boltyanskiy R, Nejati S, Thiam AR, Loewenberg M, Dufresne ER, et al. Single-step microfluidic fabrication of soft monodisperse polyelectrolyte microcapsules by interfacial complexation. Lab Chip. 2014;14:3494–7.

    CAS  PubMed  Google Scholar 

  102. Zhang L, Cai L-H, Lienemann PS, Rossow T, Polenz I, Vallmajo-Martin Q, et al. One-step microfluidic fabrication of polyelectrolyte microcapsules in aqueous conditions for protein release. Angew Chem Int Ed. 2016;55:13470–4.

    CAS  Google Scholar 

  103. Bjornmalm M, Roozmand A, Noi KF, Guo JL, Cui JW, Richardson JJ, et al. Flow-based assembly of layer-by-layer capsules through tangential flow filtration. Langmuir. 2015;31:9054–60.

    CAS  PubMed  Google Scholar 

  104. Castleberry SA, Li W, Deng D, Mayner S, Hammond PT. Capillary flow layer-by-layer: a microfluidic platform for the high-throughput assembly and screening of Nano layered film libraries. ACS Nano. 2014;8:6580–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kantak C, Beyer S, Yobas L, Bansal T, Trau D. A ‘microfluidic pinball’ for on-chip generation of layer-by-layer polyelectrolyte microcapsules. Lab Chip. 2011;11:1030–5.

    CAS  PubMed  Google Scholar 

  106. Zizzari A, Bianco M, del Mercato LL, Soraru A, Carraro M, Pellegrino P, et al. Highly sensitive membrane-based pressure sensors (MePS) for real-time monitoring of catalytic reactions. Anal Chem. 2018;90:7659–65.

    CAS  PubMed  Google Scholar 

  107. Wang B, Yoshida K, Sato K, J-i A. Phenylboronic acid-functionalized layer-by-layer assemblies for biomedical applications. Polymers (Basel). 2017;9:202.

    Google Scholar 

  108. Nifontova G, Ramos-Gomes F, Baryshnikova M, Alves F, Nabiev I, Sukhanova A. Cancer cell targeting with functionalized quantum dot-encoded polyelectrolyte microcapsules. Front Chem. 2019;7:34.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lengert E, Saveleva M, Abalymov A, Atkin V, Wuytens PC, Kamyshinskiy R, et al. Silver altinate hydrogel micro- and nanocontainers for theranostics: synthesis, encapsulation, remote release, and detection. ACS Appl Mater Interfaces. 2017;9:21949–58.

    CAS  PubMed  Google Scholar 

  110. Christau S, Genzer J, von Klitzing R. Polymer brush/metal nanoparticle hybrids for optical sensor applications: from self-assembly to tailored functions and nanoengineering. Z Phys Chem. 2015;229:1089–117.

    CAS  Google Scholar 

  111. Osica I, Melo A, Imamura G, Shiba K, Ji QM, Hill JP, et al. Fabrication of silica-protein hierarchical nanoarchitecture with gas-phase sensing activity. J Nanosci Nanotechnol. 2017;17:5908–17.

    CAS  Google Scholar 

  112. You Y-H, Nagaraja AT, Biswas A, Hwang J-H, Cote GL, McShane MJ. SERS-active smart hydrogels with modular microdomains: from pH to glucose sensing. IEEE Sensors J. 2017;17:941–50.

    CAS  Google Scholar 

  113. Takahashi S, Sato K, J-i A. Layer-by-layer construction of protein architectures through avidin-biotin and lectin-sugar interactions for biosensor applications. Anal Bioanal Chem. 2012;402:1749–58.

    CAS  PubMed  Google Scholar 

  114. Brown JQ, Srivastava R, McShane MJ. Encapsulation of glucose oxidase and an oxygen-quenched fluorophore in polyelectrolyte-coated calcium alginate microspheres as optical glucose sensor systems. Biosens Bioelectron. 2005;21:212–6.

    CAS  PubMed  Google Scholar 

  115. Qi W, Yan X, Juan L, Cui Y, Yang Y, Li J. Glucose-sensitive microcapsules from glutaraldehyde cross-linked hemoglobin and glucose oxidase. Biomacromolecules. 2009;10:1212–6.

    CAS  PubMed  Google Scholar 

  116. Kazakova LI, Sirota NP, Sirota TV, Shabarchina LI. The study of a fluorescent biosensor based on polyelectrolyte microcapsules with encapsulated glucose oxidase. Russ J Phys Chem A. 2017;91:1828–32.

    CAS  Google Scholar 

  117. Koschwanez HE, Yap FY, Klitzman B, Reichert WM. In vitro and in vivo characterization of porous poly-L-lactic acid coatings for subcutaneously implanted glucose sensors. J Biomed Mater Res Part A. 2008;87A:792–807.

    CAS  Google Scholar 

  118. Stubbe BG, Gevaert K, Derveaux S, Braeckmans K, De Geest BG, Goethals M, et al. Evaluation of encoded layer-by-layer coated microparticles as protease sensors. Adv Funct Mater. 2008;18:1624–31.

    CAS  Google Scholar 

  119. Kazakova LI, Shabarchina LI, Sukhorukov GB. Co-encapsulation of enzyme and sensitive dye as a tool for fabrication of microcapsule based sensor for urea measuring. Phys Chem Chem Phys. 2011;13:11110–7.

    CAS  PubMed  Google Scholar 

  120. Delcea M, Yashchenok A, Videnova K, Kreft O, Moehwald H, Skirtach AG. Multicompartmental micro- and nanocapsules: hierarchy and applications in biosciences. Macromol Biosci. 2010;10:465–74.

    CAS  PubMed  Google Scholar 

  121. Xiong R, Soenen SJ, Braeckmans K, Skirtach AG. Towards theranostic multicompartment microcapsules: in-situ diagnostics and laser-induced treatment. Theranostics. 2013;3:141–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Zan X, Garapaty A, Champion JA. Engineering polyelectrolyte capsules with independently controlled size and shape. Langmuir. 2015;31:7601–8.

    CAS  PubMed  Google Scholar 

  123. Yang H, Li T, Tong WJ, Gao CY. Fabrication of microcapsules with special shapes by layer-by-layer assembly on CaCO3 microparticles. Chem J Chinese U. 2018;39:172–7.

    CAS  Google Scholar 

  124. Baumler H, Georgieva R. Coupled enzyme reactions in multicompartment microparticles. Biomacromolecules. 2010;11:1480–7.

    PubMed  Google Scholar 

  125. Kato N, Caruso F. Homogeneous, competitive fluorescence quenching immunoassay based on gold nanoparticle/polyelectrolyte coated latex particles. J Phys Chem B. 2005;109:19604–12.

    CAS  PubMed  Google Scholar 

  126. Yu L, Xu HL, Monro TM, Lancaster DG, Xie Y, Zeng HB, et al. Ultrafast colorimetric humidity-sensitive polyelectrolyte coating for touchless control. Mater Horiz. 2017;4:72–82.

    CAS  Google Scholar 

  127. Yu AM, Liang ZJ, Cho J, Caruso F. Nanostructured electrochemical sensor based on dense gold nanoparticle films. Nano Lett. 2003;3:1203–7.

    CAS  Google Scholar 

  128. Burdette SC, Walkup GK, Spingler B, Tsien RY, Lippard SJ. Fluorescent sensors for Zn2+ based on a fluorescein platform: synthesis, properties and intracellular distribution. J Am Chem Soc. 2001;123:7831–41.

    CAS  PubMed  Google Scholar 

  129. Wallace DJ, Borgloh S, Astori S, Yang Y, Bausen M, Kugler S, et al. Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor. Nat Methods. 2008;5:797–804.

    CAS  PubMed  Google Scholar 

  130. Zhao S, Caruso F, Daehne L, Decher G, De Geest BG, Fan J, et al. The future of layer-by-layer assembly: a tribute to ACS nano associate editor Helmuth Mohwald. ACS Nano. 2019;13:6151–69.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Special Research Fund (BOF) of Ghent University (01IO3618, BOF14/IOP/003, BAS094-18) and FWO-Vlaanderen (G043219, 1524618N). JL thanks the China Scholarship Council (CSC) for support. BVP is a FWO post-doctoral fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre G. Skirtach.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Euroanalysis XX with guest editor Sibel A. Ozkan.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van der Meeren, L., Li, J., Parakhonskiy, B.V. et al. Classification of analytics, sensorics, and bioanalytics with polyelectrolyte multilayer capsules. Anal Bioanal Chem 412, 5015–5029 (2020). https://doi.org/10.1007/s00216-020-02428-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02428-8

Keywords

Navigation