Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 8, 2020

Characterization of substrate specificity and novel autoprocessing mechanism of dipeptidase A from Prevotella intermedia

  • Mohammad Tanvir Sarwar , Yuko Ohara-Nemoto , Takeshi Kobayakawa , Mariko Naito and Takayuki K. Nemoto ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

Prevotella intermedia, a Gram-negative anaerobic rod, is frequently observed in subgingival polymicrobial biofilms from adults with chronic periodontitis. Peptidases in periodontopathic bacteria are considered to function as etiological reagents. Prevotella intermedia OMA14 cells abundantly express an unidentified cysteine peptidase specific for Arg-4-methycoumaryl-7-amide (MCA). BAU17746 (locus tag, PIOMA14_I_1238) and BAU18827 (locus tag, PIOMA14_II_0322) emerged as candidates of this peptidase from the substrate specificity and sequence similarity with C69-family Streptococcus gordonii Arg-aminopeptidase. The recombinant form of the former solely exhibited hydrolyzing activity toward Arg-MCA, and BAU17746 possesses a 26.6% amino acid identity with the C69-family Lactobacillus helveticus dipeptidase A. It was found that BAU17746 as well as L. helveticus dipeptidase A was a P1-position Arg-specific dipeptidase A, although the L. helveticus entity, a representative of the C69 family, had been reported to be specific for Leu and Phe. The full-length form of BAU17746 was intramolecularly processed to a mature form carrying the N-terminus of Cys15. In conclusion, the marked Arg-MCA-hydrolyzing activity in Pre. intermedia was mediated by BAU17746 belonging to the C69-family dipeptidase A, in which the mature form carries an essential cysteine at the N-terminus.

Acknowledgments

This study was supported by JSPS KAKENHI grants (Funder Id: http://dx.doi.org/10.13039/501100001691, JP19K10045 to T.K.N. and JP19K10071 to Y.O.-N.). M.T.S. is a graduate student supported by a Japanese Government (MEXT) Scholarship.

References

Baumgartner, J.C., Watkins, B.J., Bae, K.S., and Xia, T. (1999). Association of black-pigmented bacteria with endodontic infections. J. Endod. 25, 413–415.10.1016/S0099-2399(99)80268-4Search in Google Scholar

Bezerra, G.A., Ohara-Nemoto, Y., Cornaciu, I., Fedosyuk, S., Hoffmann, G., Round, A., Márquez, J.A., Nemoto, T.K., and Djinović-Carugo, K. (2017). Bacterial protease uses distinct thermodynamic signatures for substrate recognition. Sci. Rep. 7, 2848.10.1038/s41598-017-03220-ySearch in Google Scholar

Chen, Z., Potempa, J., Polanowski, A., Wikstrom, M., and Travis, J. (1992). Purification and characterization of a 50-kDa cysteine proteinase (gingipain) from Porphyromonas gingivalis. J. Biol. Chem. 267, 18896−188901.10.1016/S0021-9258(19)37045-0Search in Google Scholar

Deng, Z.L., Szafranski, S.P., Jarek, M., Bhuju, S., and Wagner-Dobler, I. (2017). Dysbiosis in chronic periodontitis: key microbial players and interactions with the human host. Sci. Rep. 7, 3703.10.1038/s41598-017-03804-8Search in Google Scholar

Deschner, J., Singhal, A., Long, P., Liu, C.C., Piesco, N., and Agarwal, S. (2003). Cleavage of CD14 and LBP by a protease from Prevotella intermedia. Arch. Microbiol. 179, 430–436.10.1007/s00203-003-0548-1Search in Google Scholar

Doi, E., Shibata, D., and Matoba, T. (1981). Modified colorimetric ninhydrin methods for peptidase assay. Anal. Biochem. 118, 173–184.10.1016/0003-2697(81)90175-5Search in Google Scholar

Dudley, E.G. and Steele, J.L. (2012). Dipeptidase DA. In: Handbook of Proteolytic Enzymes, 3 edn, N.D. Rawlings and G.S. Salvesen, eds. (Amsterdam: Elsevier), pp. 3657–3659.10.1016/B978-0-12-382219-2.00810-3Search in Google Scholar

Dudley, E.G., Husgen, A.C., He, W., and Steele, J.L. (1996). Sequencing, distribution, and inactivation of the dipeptidase A gene (pepDA) from Lactobacillus helveticus CNRZ32. J. Bacteriol. 178, 701–704.10.1128/jb.178.3.701-704.1996Search in Google Scholar

Eiring, P., Waller, K., Widmann, A., and Werner, H. (1998). Fibronectin and laminin binding of urogenital and oral prevotella species. Zentralbl. Bakteriol. 288, 361–372.10.1016/S0934-8840(98)80009-1Search in Google Scholar

Friedrich, V., Janesch, B., Windwarder, M., Maresch, D., Braun, M.L., Megson, Z.A., Vinogradov, E., Goneau, M.F., Sharma, A., Altmann, F., et al. (2017). Tannerella forsythia strains display different cell-surface nonulosonic acids: biosynthetic pathway characterization and first insight into biological implications. Glycobiology 27, 342–357.10.1093/glycob/cww129Search in Google Scholar

Fukushima, H. (1992). Phenotypic characteristics and DNA relatedness in Prevotella intermedia and similar organisms. Oral Microbiol. Immunol. 7, 60–64.10.1111/j.1399-302X.1992.tb00023.xSearch in Google Scholar

Fukushima, H., Yamamoto, K., Hirohata, K., Sagawa, H., Leung, K.P., and Walker, C.B. (1990). Localization and identification of root canal bacteria in clinically asymptomatic periapical pathosis, J. Endod. 16, 534–538.10.1016/S0099-2399(07)80216-0Search in Google Scholar

Goldstein, J.M., Nelson, D., Kordula, T., Mayo, J.A., and Travis, J. (2002). Extracellular arginine aminopeptidase from Streptococcus gordonii FSS2. Infect. Immun. 70, 836–843.10.1128/IAI.70.2.836-843.2002Search in Google Scholar

Gomes, B.P., Drucker, D.B., and Lilley, J.D. (1994). Associations of specific bacteria with some endodontic signs and symptoms. Int. Endod. J. 27, 291–298.10.1111/j.1365-2591.1994.tb00271.xSearch in Google Scholar

Gomes, B.P., Lilley, J.D., and Drucker, D.B. (1996). Associations of endodontic symptoms and signs with particular combinations of specific bacteria. Int. Endod. J. 29, 69–75.10.1111/j.1365-2591.1996.tb01164.xSearch in Google Scholar

Hayashi, H., Shibata, K., Sakamoto, M., Tomita, S., and Benno, Y. (2007). Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human feces. Int. J. Syst. Evol. Microbiol. 57, 941–946.10.1099/ijs.0.64778-0Search in Google Scholar

Holdeman, L.V., Cato, E.P., and Moore, W.E. (1977). Anaerobic Laboratory Manual. (4, Blacksburg, VA, USA: Virginia Polytechnic Institute and State University).Search in Google Scholar

Ikeda, Y., Ohara-Nemoto, Y., Kimura, S., Ishibashi, K., and Kikuchi, K. (2004). PCR-based identification of Staphylococcus epidermidis targeting gseA encoding the glutamic-acid-specific protease. Can. J. Microbiol. 50, 493–498.10.1139/w04-055Search in Google Scholar

Jacinto, R.C., Gomes, B.P., Ferraz, C.C., Zaia, A.A., and Filho, F.J. (2003). Microbiological analysis of infected root canals from symptomatic and asymptomatic teeth with periapical periodontitis and the antimicrobial susceptibility of some isolated anaerobic bacteria. Oral Microbiol. Immunol. 18, 285–292.10.1034/j.1399-302X.2003.00078.xSearch in Google Scholar

Loesche, W.J., Syed, S.A., Laughon, B.E., and Stoll, J. (1982). The bacteriology of acute necrotizing ulcerative gingivitis. J. Periodontol. 53, 223–230.10.1902/jop.1982.53.4.223Search in Google Scholar

Naito, M., Ogura, Y., Itoh, T., Shoji, M., Okamoto, M., Hayashi, T., and Nakayama, K. (2016). The complete genome sequencing of Prevotella intermedia strain OMA14 and a subsequent fine-scale, intra-species genomic comparison reveals an unusual amplification of conjugative and mobile transposons and identify a novel Prevotella-lineage-specific repeat. DNA Res. 23, 11–19.10.1093/dnares/dsv032Search in Google Scholar

Nemoto, T.K. and Ohara-Nemoto, Y. (2016). Exopeptidases and gingipains in Porphyromonas gingivalis as prerequisites for its amino acid metabolism. Jpn. Dental Sci. Rev. 52, 22–29.10.1016/j.jdsr.2015.08.002Search in Google Scholar

Nemoto, T., Ohara-Nemoto, Y., Shimazaki, S., and Ota, M. (1994). Dimerization characteristics of the DNA- and steroid-binding domains of the androgen receptor. J. Steroid Biochem. 50, 225–233.10.1016/0960-0760(94)90126-0Search in Google Scholar

Nemoto, T.K., Ohara-Nemoto, Y., Bezerra, G.A., Shimoyama, Y., and Kimura, S. (2016). A Porphyromonas gingivalis periplasmic novel exopeptidase, acylpeptidyl oligopeptidase, releases N-acylated di- and tri-peptides from oligopeptides. J. Biol. Chem. 291, 5913–5925.10.1074/jbc.M115.687566Search in Google Scholar

Nemoto, T.K., Ono, T., and Ohara-Nemoto, Y. (2018). Establishment of potent and specific synthetic substrate for dipeptidyl-peptidase 7. Anal. Biochem. 548, 78–81.10.1016/j.ab.2018.02.008Search in Google Scholar

Offenbacher, S., Lieff, S., Boggess, K.A., Murtha, A.P., Madianos, P.N., Champagne, C.M., McKaig, R.G., Jared, H.L., Mauriello, S.M., Auten Jr, R.L., et al. (2001). Maternal periodontitis and prematurity. Part I: obstetric outcome of prematurity and growth restriction. Ann. Periodontol. 6, 164–174.10.1902/annals.2001.6.1.164Search in Google Scholar

Ohara-Nemoto, Y., Shimoyama, Y., Kimura, S., Kon, A., Haraga, H., Ono, T., and Nemoto, T.K. (2011). Asp- and Glu-specific novel dipeptidyl peptidase 11 of Porphyromonas gingivalis ensures utilization of proteinaceous energy sources. J. Biol. Chem. 286, 38115–38127.10.1074/jbc.M111.278572Search in Google Scholar

Ohara-Nemoto, Y., Rouf, S.M., Naito, M., Yanase, A., Tetsuo, F., Ono, T., Kobayakawa, T., Shimoyama, Y., Kimura, S., Nakayama, K., et al. (2014). Identification and characterization of prokaryotic dipeptidyl-peptidase 5 from Porphyromonas gingivalis. J. Biol. Chem. 289, 5436–5448.10.1074/jbc.M113.527333Search in Google Scholar

Ohara-Nemoto, Y., Nakasato, M., Shimoyama, Y., Baba, T.T., Kobayakawa, T., Ono, T., Yaegashi, T., Kimura, S., and Nemoto, T.K. (2017). Degradation of incretins and modulation of blood glucose levels by periodontopathic bacterial dipeptidyl peptidase 4. Infect. Immun. 85, pii: e00277–17.10.1128/IAI.00277-17Search in Google Scholar

Ohara-Nemoto, Y., Shimoyama, Y., Nakasato, N., Nishimata, H., Ishikawa, T., Sasaki, M., Kimura, S., and Nemoto, T.K. (2018). Distribution of dipeptidyl peptidase (DPP) 4, DPP5, DPP7, and DPP11 in human oral microbiota-potent biomarkers indicating presence of periodontopathic bacteria. FEMS Microbiol. Lett. 365, fny221.10.1093/femsle/fny221Search in Google Scholar

Pavloff, N., Potempa, J., Pike, R.N., Prochazka, V., Kiefer, M.C., Travis, J., and Barr, P.J. (1995). Molecular cloning and structural characterization of the Arg-gingipain proteinase of Porphyromonas gingivalis. Biosynthesis as a proteinase-adhesin polyprotein. J. Biol. Chem. 270, 1007–1010.10.1074/jbc.270.3.1007Search in Google Scholar

Pavloff, N., Pemberton, P.A., Potempa, J., Chen, W.C., Pike, R.N., Prochazka, V., Kiefer, M.C., Travis, J., and Barr, P.J. (1997).Molecular cloning and characterization of Porphyromonas gingivalis lysine-specific gingipain. A new member of an emerging family of pathogenic bacterial cysteine proteinases. J. Biol. Chem. 272, 1595–1600.10.1074/jbc.272.3.1595Search in Google Scholar

Pei, J. and Grishin, N.V. (2003). Peptidase family U34 belongs to the superfamily of N-terminal nucleophile hydrolyases. Potein Sci. 12, 1131–1135.10.1110/ps.0240803Search in Google Scholar

Pike, R., McGraw, W., Potempa, J., and Travis, J. (1994). Lysine- and arginine-specific proteinases from Porphyromonas gingivalis. Isolation, characterization, and evidence for the existence of complexes with hemagglutinins. J. Biol. Chem. 269, 406–411.10.1016/S0021-9258(17)42365-9Search in Google Scholar

Potempa, J. and Pike, R.N. (2009). Corruption of innate immunity by bacterial proteases. J. Innate Immun. 1, 70–87.10.1159/000181144Search in Google Scholar

Potempa, J., Banbula, A., and Travis, J. (2000). Role of bacterial proteinases in matrix destruction and modulation of host responses. Periodontol. 24, 153–192.10.1034/j.1600-0757.2000.2240108.xSearch in Google Scholar

Potempa, M., Potempa, J., Kantyka, T., Nguyen, K.A., Wawrzonek, K., Manandhar, S.P., Popadiak, K., Riesbeck, K., Eick, S., and Blom, A.M. (2009). Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3. PLoS Pathog. 5, e1000316.10.1371/journal.ppat.1000316Search in Google Scholar

Raber-Durlacher, J.E., Van Steenbergen, T.J., Van der Velden, U., De Graaff, J., and Abraham-Inpijn, L. (1994). Experimental gingivitis during pregnancy and post-partum: clinical, endocrinological, and microbiological aspects. J. Clin. Periodontol. 21, 549–558.10.1111/j.1600-051X.1994.tb01172.xSearch in Google Scholar

Rams, T.E. and van Winkelhoff, A.J. (2017). Introduction to clinical microbiology for the general dentist. Dent. Clin. North Am. 61, 179–197.10.1016/j.cden.2016.11.001Search in Google Scholar

Rawlings, N.D., Barrett, A.J., and Bateman, A. (2012). MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 40, D343–D350.10.1093/nar/gkr987Search in Google Scholar

Rouf, S.M.A., Ohara-Nemoto, Y., Hoshino, T., Fujiwara, T., Ono, T., and Nemoto, T.K. (2013). Discrimination based on Gly and Arg/Ser at position 673 between dipeptidyl-peptidase (DPP) 7 and DPP11, widely distributed DPPs in pathogenic and environmental Gram-negative bacteria. Biochimie 95, 824–832.10.1016/j.biochi.2012.11.019Search in Google Scholar

Scannapieco, F.A., Bush, R.B., and Paju, S. (2003). Associations between periodontal disease and risk for atherosclerosis, cardiovascular disease, and stroke, a systematic review. Ann. Periodontol. 8, 38–53.10.1902/annals.2003.8.1.38Search in Google Scholar

Scott, C.F., Whitaker, E.J., Hammond, B.F., and Colman, R.W. (1993). Purification and characterization of a potent 70-kDa thiol lysyl-proteinase (Lys-gingivain) from Porphyromonas gingivalis that cleaves kininogens and fibrinogen. J. Biol. Chem. 268, 7935–7942.10.1016/S0021-9258(18)53048-9Search in Google Scholar

Shah, H.N. and Williams, R.A.D. (1987). Utilization of glucose and amino acids by Bacteroides intermedius and Bacteroides gingivalis. Curr. Microbiol. 15, 241–246.10.1007/BF01589374Search in Google Scholar

Shibata, Y., Miwa, Y., Hirai, K., and Fujimura, S. (2003). Purification and partial characterization of a dipeptidyl peptidase from Prevotella intermedia. Oral Microbiol. Immunol. 18, 196–198.10.1034/j.1399-302X.2003.00057.xSearch in Google Scholar PubMed

Suido, H., Nakamura, M., Mashimo, P.A., Zambon, J.J., and Genco, R.J. (1986). Arylaminopeptidase activities of oral bacteria. J. Dent. Res. 65, 1336–1340.10.1177/00220345860650111101Search in Google Scholar PubMed

Takahashi, N. and Sato, T. (2001). Preferential utilization of dipeptides by Porphyromonas gingivalis. J. Dent. Res. 80, 1425–1429.10.1177/00220345010800050801Search in Google Scholar PubMed

Vesanto, E., Peltoniemi, K., Purtsi, T., and Steele, J.L. (1996). Molecular characterization, over-expression and purification of a novel dipeptidase from Lactobacillus helveticus. Appl. Microbiol. Biotech. 45, 638–645.10.1007/s002530050741Search in Google Scholar PubMed

Way, G., Morrice, N., Smythe, C., and O’Sullivan, A.J. (2002). Purification and identification of secernin, a novel cytosolic protein that regulates exocytosis in mast cells. Mol. Cell. Biol. 13, 3344–3354.10.1091/mbc.e01-10-0094Search in Google Scholar PubMed PubMed Central

Yanagisawa, M., Kuriyama, T., Williams, D.W., Nakagawa, K., and Karasawa, T. (2006). Proteinase activity of prevotella species associated with oral purulent infection. Curr. Microbiol. 52, 375–378.10.1007/s00284-005-0261-1Search in Google Scholar PubMed

Yano, T., Fukamachi, H., Yamamoto, M., and Igarashi, T. (2009). Characterization of L-cysteine desulfhydrase from Prevotella intermedia. Oral Microbiol. Immunol. 24, 485–492.10.1111/j.1399-302X.2009.00546.xSearch in Google Scholar PubMed

Received: 2019-10-08
Accepted: 2019-12-19
Published Online: 2020-01-08
Published in Print: 2020-04-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2019-0387/html
Scroll to top button