Skip to main content
Log in

Estimation of available epinephrine dose in expired and discolored autoinjectors via quantitative smartphone imaging

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Epinephrine autoinjectors (EAIs) are important first aid medications for treating anaphylaxis. A 10-fold price increase over the past 12 years and evidence that expired EAIs may still contain significant doses of available epinephrine have motivated interest in the efficacy of expired EAIs as treatments of last resort. Degradation of expired EAIs, which can be caused by improper storage conditions, results in various degrees of discoloration of the epinephrine solution. Previous studies have determined that significant epinephrine remains available in expired EAIs, but these have only considered EAIs that show no discoloration. Here, we investigate the potential for colorimetric estimation of available epinephrine dose based on the degree of discoloration in expired EAIs. The correlation of available epinephrine dose and time since expiration date was poor (r = − 0.37), as determined by an industry standard UHPLC protocol. Visible absorbance of the samples integrated across the range 430–475 nm correlated well with available epinephrine dose (r = − 0.71). This wavelength corresponds to the blue channel of a typical smartphone camera Bayer filter. Smartphone camera images of the EAI solutions in various illumination conditions were analyzed to assign color indices representing the degree of discoloration. Color index of the samples showed similar correlation (|r| > 0.7) with available epinephrine dose as that of visible spectrophotometry. Smartphone imaging colorimetry is proposed as a potential point-of-use epinephrine dose estimator for expired and degraded EAIs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Simons FE. Epinephrine (adrenaline) in the first-aid, out-of-hospital treatment of anaphylaxis. Novartis Found Symp. 2004;257:228–43 discussion 43–7, 76–85.

    PubMed  CAS  Google Scholar 

  2. Lieberman A, Marks A, Peet A. Mark’s basic medical biochemistry: a clinical approach. 4th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2013.

    Google Scholar 

  3. Boden SR, Wesley Burks A. Anaphylaxis: a history with emphasis on food allergy. Immunol Rev. 2011;242(1):247–57.

    Article  CAS  Google Scholar 

  4. Golden DB, Marsh DG, Kagey-Sobotka A, Freidhoff L, Szklo M, Valentine MD, et al. Epidemiology of insect venom sensitivity. JAMA. 1989;262(2):240–4.

    Article  CAS  Google Scholar 

  5. Barnard JH. Studies of 400 Hymenoptera sting deaths in the United States. J Allergy Clin Immunol. 1973;52(5):259–64.

    Article  CAS  Google Scholar 

  6. Sampson HA, Munoz-Furlong A, Bock SA, Schmitt C, Bass R, Chowdhury BA, et al. Symposium on the definition and management of anaphylaxis: summary report. J Allergy Clin Immunol. 2005;115(3):584–91.

    Article  Google Scholar 

  7. Sampson HA. Anaphylaxis and emergency treatment. Pediatrics. 2003;111(6 Pt 3):1601–8.

    PubMed  Google Scholar 

  8. Sicherer SH, Simons FER. Epinephrine for first-aid management of anaphylaxis. Pediatrics. 2017;139(3).

  9. Lieberman PL. Recognition and first-line treatment of anaphylaxis. Am J Med. 2014;127:S6–11.

    Article  Google Scholar 

  10. Prince BT, Mikhail I, Stukus DR. Underuse of epinephrine for the treatment of anaphylaxis: missed opportunities. J Asthma Allergy. 2018;11:143–51.

    Article  CAS  Google Scholar 

  11. What is epinephrine? Mylan. 2019. https://www.epipen.com/en/about-epipen-and-generic/what-is-epinephrine. Accessed June 2019.

  12. Pepper AN, Westermann-Clark E, Lockey RF. The high cost of epinephrine autoinjectors and possible alternatives. J Allergy Clin Immunol Pract. 2017;5(3):665.

    Article  Google Scholar 

  13. Rubin R. EpiPen price hike comes under scrutiny. Lancet. 2016;388(10051):1266.

    Article  Google Scholar 

  14. Noone SA, Sicherer SH. Patient compliance with self-administered epinephrine (SAE) for food allergic (FA) children. J Allergy Clin Immunol. 1999;103(1):S54.

    Article  Google Scholar 

  15. Huang SW. A survey of Epi-PEN use in patients with a history of anaphylaxis. J Allergy Clin Immunol. 1998;102(3):525–6.

    Article  CAS  Google Scholar 

  16. Patadia DD, Stukus DR. Are expired EpiPens still viable? J Allergy Clin Immunol Pract. 2017;5(5):1469–70.

    Article  Google Scholar 

  17. Rachid O, Simons FER, Wein MB, Rawas-Qalaji M, Simons KJ. Epinephrine doses contained in outdated epinephrine auto-injectors collected in a Florida allergy practice. Ann Allergy Asthma Immunol. 2015;114(4):354.

    Article  CAS  Google Scholar 

  18. Simons FER, Gu XC, Simons KJ. Outdated EpiPen and EpiPen Jr autoinjectors: past their prime? J Allergy Clin Immunol. 2000;105(5):1025–30.

    Article  CAS  Google Scholar 

  19. American Society of Health System Pharmacists. Bethesda, MD: AHFS Drug Information; 2009.

  20. Parish HG, Bowser CS, Morton JR, Brown JC. A systematic review of epinephrine degradation with exposure to excessive heat or cold. Ann Allergy Asthma Immunol. 2016;117(1):79–87.

    Article  CAS  Google Scholar 

  21. Corwin ME, Spencer WH. Conjunctival melanin depositions—a side-effect of topical epinephrine therapy. AMA Arch Ophthalmol. 1963;69(3):317.

    Article  CAS  Google Scholar 

  22. Veirs ER, McGrew JC. Ocular complications from topical epinephrine therapy of glaucoma. Eye Ear Nose Throat Mon. 1963;42(9):46–52.

    PubMed  CAS  Google Scholar 

  23. Ferry AP, Zimmerman LE. Black cornea—complication of topical use of epinephrine. Am J Ophthalmol. 1964;58(2):205.

    Article  CAS  Google Scholar 

  24. Reinecke RD. Kuwabara T. Corneal deposits secondary to topical epinephrine. AMA Arch Ophthalmol. 1963;70(2):170.

    Article  CAS  Google Scholar 

  25. Cleasby G, Donaldson DD. Epinephrine pigmentation of the cornea. JAMA Ophthalmol. 1967;78(1):74–5.

    Google Scholar 

  26. Bullock JD. Epinephrine pigmentation. JAMA Ophthalmol. 1970;84(4):546.

    Google Scholar 

  27. Bernstein HN. Epinephrine pigmentation—reply. AMA Arch Ophthalmol. 1970;84(4):546.

    Article  Google Scholar 

  28. Garnayak S, Patel S. Oxidation of epinephrine to adrenochrome by cetyltrimethylammonium dichromate: a mechanistic study. Ind Eng Chem Res. 2014;53(31):12249–56.

    Article  CAS  Google Scholar 

  29. https://www.hopkinsmedicine.org/som/wildernessmedicine/index.html. Accessed 7 Oct 2019.

  30. Pietroski N. Expired drugs: immortal or DOA? Wilderness Medicine Magazine. 2015 November 29.

  31. Wang TT, Lio CK, Huang H, Wang RY, Zhou H, Luo P, et al. A feasible image-based colorimetric assay using a smartphone RGB camera for point-of-care monitoring of diabetes. Talanta. 2020;206.

  32. Sekine Y, Kim SB, Zhang Y, Bandodkar AJ, Xu S, Choi J, et al. A fluorometric skin-interfaced microfluidic device and smartphone imaging module for in situ quantitative analysis of sweat chemistry. Lab Chip. 2018;18(15):2178–86.

    Article  CAS  Google Scholar 

  33. Mahato K, Chandra P. Paper-based miniaturized immunosensor for naked eye ALP detection based on digital image colorimetry integrated with smartphone. Biosens Bioelectron. 2019;128:9–16.

    Article  CAS  Google Scholar 

  34. Hou L, Qin YX, Li JY, Qin SY, Huang YL, Lin TR, et al. A ratiometric multicolor fluorescence biosensor for visual detection of alkaline phosphatase activity via a smartphone. Biosens Bioelectron. 2019;143.

  35. Priye A, Ball CS, Meagher RJ. Colorimetric-luminance readout for quantitative analysis of fluorescence signals with a smartphone CMOS sensor. Anal Chem. 2018;90(21):12385–9.

    Article  CAS  Google Scholar 

  36. Minagawa Y, Ueno H, Tabata KV, Noji H. Mobile imaging platform for digital influenza virus counting. Lab Chip. 2019;19(16):2678–87.

    Article  CAS  Google Scholar 

  37. Lv SZ, Zhang KY, Tang DP. A new visual immunoassay for prostate-specific antigen using near-infrared excited CuxS nanocrystals and imaging on a smartphone. Analyst. 2019;144(12):3716–20.

    Article  CAS  Google Scholar 

  38. Shan YK, Wang B, Huang HC, Jiang D, Wu XP, Xue L, et al. On-site quantitative Hg2+ measurements based on selective and sensitive fluorescence biosensor and miniaturized smartphone fluorescence microscope. Biosens Bioelectron. 2019;132:238–47.

    Article  CAS  Google Scholar 

  39. Ravindranath R, Periasamy AP, Roy P, Chen YW, Chang HT. Smart app-based on-field colorimetric quantification of mercury via analyte-induced enhancement of the photocatalytic activity of TiO2-Au nanospheres. Anal Bioanal. 2018;410(18):4555–64.

    Article  CAS  Google Scholar 

  40. Lee WI, Park Y, Park J, Shrivastava S, Son YM, Choi HJ, et al. A smartphone fluorescence imaging-based mobile biosensing system integrated with a passive fluidic control cartridge for minimal user intervention and high accuracy. Lab Chip. 2019;19(8):1502–11.

    Article  CAS  Google Scholar 

  41. Convention USP. USP35 NF30, 2012: U. S. Pharmacopoeia National Formulary. United States Pharmacopeial; 2011.

  42. Xiaoqian W, Fan F, Jiatong S, Lu W, Srivastava A, Chigrinov VG. Evaluation of LC Fresnel phase plate utilized as colour filter. 2012.

  43. Cheremkhin PA, Lesnichii VV, Petrov NV. Use of spectral characteristics of DSLR cameras with Bayer filter sensors. J Phys Conf Ser. 2014;536:012021.

    Article  Google Scholar 

  44. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676.

    Article  CAS  Google Scholar 

  45. Watters RL, Carroll RJ, Spiegelman CH. Error modeling and confidence interval estimation for inductively coupled plasma calibration curves. Anal Chem. 1987;59(13):1639–43.

    Article  CAS  Google Scholar 

  46. Lieberman P, Nicklas RA, Randolph C, Oppenheimer J, Bernstein D, Bernstein J, et al. Anaphylaxis—a practice parameter update 2015. Ann Allergy Asthma Immunol. 2015;115(5):341–84.

    Article  Google Scholar 

  47. The United States Pharmacopeia: USP 24: the National Formulary: NF 19 : by authority of the United States Pharmacopoeial Convention, Inc., meeting at Washington, D.C., March 9–12, 1995 ; prepared by the Committee of Revision and published by the Board of Trustees. Rockville, Md.: United States Pharmacopeial Convention; 1999.

Download references

Acknowledgments

We would like to thank Dr. Seth C. Hawkins MD for his interest in the project and supplying the EAIs that were used in testing.

Funding

This work was supported by start-up funding provided by the University of Tennessee, College of Arts and Sciences, and the Department of Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Baker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleheen, A., Campbell, B.M., Prosser, R.A. et al. Estimation of available epinephrine dose in expired and discolored autoinjectors via quantitative smartphone imaging. Anal Bioanal Chem 412, 2785–2793 (2020). https://doi.org/10.1007/s00216-020-02505-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02505-y

Keywords

Navigation