Skip to main content
Log in

Transport of maternal transthyretin to the fetus in the viviparous teleost Neoditrema ransonnetii (Perciformes, Embiotocidae)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The molecular basis of viviparity in non-mammalian species has not been widely studied. Neoditrema ransonnetii, a surfperch, is a matrotrophic teleost whose fetuses grow by ovarian cavity fluid (OCF) ingestion and by nutrient absorption via their enlarged hindgut. We performed a proteomics analysis of N. ransonnetii plasma protein and found proteins specific to pregnant females; one of these was identified as transthyretin (TTR), a thyroid hormone distributor protein. We synthesized recombinant protein rNrTTR and raised an antibody, anti-rNrTTR, against it. Semi-quantitative analysis by western blotting using the antibody demonstrated that plasma TTR levels were significantly greater in pregnant fish than in non-pregnant fish. OCF and fetal plasma also contained high TTR levels. Immunohistochemical staining showed that large amounts of maternal TTR were taken up by fetal intestinal epithelial cells. These results indicate that maternal TTR is secreted into OCF and taken up by fetal enterocytes, presumably to deliver thyroid hormones to developing fetuses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Blake CCF, Oatley SJ (1977) Protein-DNA and protein-hormone interactions in prealbumin: a model of the thyroid hormone nuclear receptor. Nature 268:115–120

    CAS  PubMed  Google Scholar 

  • Buxbaum JN, Reixach N (2009) Transthyretin: the servant of many masters. Cell Mol Life Sci 66:3095–3101

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Escobar GM, Obregón MJ, del Rey FE (2007) Iodine deficiency and brain development in the first half of pregnancy. Public Health Nutr 10(12A):1554–1570

    PubMed  Google Scholar 

  • Diao H, Xiao S, Cui J, Chun J, Xu Y, Ye X (2010) Progesterone receptor-mediated up-regulation of transthyretin in preimplantation mouse uterus. Fertil Steril 93:2750–2753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobbs GH (1975) Scanning electron microscopy of intraovarian embryos of the viviparous teleost, Micrometrus minimus (Gibbons), (Perciformes: Embiotocidae). J Fish Biol 7:209–214

    Google Scholar 

  • Forhead AJ, Fowden AL (2014) Thyroid hormones in fetal growth and prepartum maturation. J Endocrinol 221:R87–R103

    CAS  PubMed  Google Scholar 

  • Funkenstein B, Perrot V, Brown CL (1999) Cloning of putative piscine (Sparus aurata) transthyretin: developmental expression and tissue distribution. Mol Cell Endocrinol 157:67–73

    CAS  PubMed  Google Scholar 

  • Funkenstein B, Bowman CJ, Denslow ND, Cardinali M, Carnevali O (2000) Contrasting effects of estrogen on transthyretin and vitellogenin expression in males of the marine fish, Sparus aurata. Mol Cell Endocrinol 167:33–41

    CAS  PubMed  Google Scholar 

  • Hamilton JA, Benson MD (2001) Transthyretin: a review from a structural perspective. Cell Mol Life Sci 58:1491–1521

    CAS  PubMed  Google Scholar 

  • Kasai K, Nishiyama N, Yamauchi K (2018) Molecular and thyroid hormone binding properties of lamprey transthyretins: the role of an N-terminal histidine-rich segment in hormone binding with high affinity. Mol Cell Endocrinol 474:74–88

    CAS  PubMed  Google Scholar 

  • Kawakami Y, Seoka M, Miyashita S, Kumai H, Ohta H (2006) Characterization of transthyretin in the Pacific bluefin tuna, Thunnus orientalis. Zool Sci 23:443–448

    PubMed  Google Scholar 

  • Landers KA, McKinnon BD, Li H, Subramaniam VN, Mortimer RH, Richard K (2009) Carrier-mediated thyroid hormone transport into placenta by placental transthyretin. J Clin Endocrinol Metab 94:2610–2616

    CAS  PubMed  Google Scholar 

  • Landers KA, Mortimer RH, Richard K (2013) Transthyretin and the human placenta. Placenta 34:513–517

    CAS  PubMed  Google Scholar 

  • Landers KA, Li H, Mortimer RH, McLeod DSA, d'Emden MC, Richard K (2018) Transthyretin uptake in placental cells is regulated by the high-density lipoprotein receptor, scavenger receptor class B member 1. Mol Cell Endocrinol 474:89–96

    CAS  PubMed  Google Scholar 

  • Manzon RG, Manzon LA (2017) Lamprey metamorphosis: thyroid hormone signaling in a basal vertebrate. Mol Cell Endocrinol 459:28–42

    CAS  PubMed  Google Scholar 

  • Manzon RG, Neuls TM, Manzon LA (2007) Molecular cloning, tissue distribution, and developmental expression of lamprey transthyretins. Gen Comp Endocrinol 151:55–65

    CAS  PubMed  Google Scholar 

  • McKinnon B, Li H, Richard K, Mortimer R (2005) Synthesis of thyroid hormone binding proteins transthyretin and albumin by human trophoblast. J Clin Endocrinol Metab 90:6714–6720

    CAS  PubMed  Google Scholar 

  • McLean TR, Rank MM, Smooker PM, Richardson SJ (2017) Evolution of thyroid hormone distributor proteins. Mol Cell Endocrinol 459:43–52

    CAS  PubMed  Google Scholar 

  • Moog NK, Entringer S, Heim C, Wadhwa PD, Kathmann N, Buss C (2017) Influence of maternal thyroid hormones during gestation on fetal brain development. Neuroscience 342:68–100

    CAS  PubMed  Google Scholar 

  • Morgado I, Santos CRA, Jacinto R, Power DM (2007) Regulation of transthyretin by thyroid hormones in fish. Gen Comp Endocrinol 152:189–197

    CAS  PubMed  Google Scholar 

  • Morgado I, Melo EP, Lundberg E, Estrela NL, Sauer-Eriksson AE, Power DM (2008) Hormone affinity and fibril formation of piscine transthyretin: the role of the N-terminal. Mol Cell Endocrinol 295:48–58

    CAS  PubMed  Google Scholar 

  • Murphy BF, Thompson MB (2011) A review of the evolution of viviparity in squamate reptiles: the past, present and future role of molecular biology and genomics. J Comp Physiol B. 181:575–594

    PubMed  Google Scholar 

  • Nakamura O, Tazumi Y, Muro T, Yasuhara Y, Watanabe T (2004) Active uptake and transport of protein by the intestinal epithelial cells in embryo of viviparous fish, Neoditrema ransonneti (Percoformes: Embiotocidae). J Exp Zool 301A:38–48

    Google Scholar 

  • Nakamura O, Kudo R, Aoki H, Watanabe T (2006) IgM secretion and absorption in the materno-fetal interface of a viviparous teleost, Neoditrema ransonneti (Perciformes; Embiotocidae). Dev Comp Immunol 30:493–502

    CAS  PubMed  Google Scholar 

  • Nakamura O, Nozawa Y, Saito E, Ikeda D, Tsutsui S (2009) An alpha-1-acid glycoprotein-like protein as a major component of the ovarian cavity fluid of viviparous fish, Neoditrema ransonnetii (Perciformes, Embiotocidae). Comp Physiol Biochem 153A:222–229

    CAS  Google Scholar 

  • Nakamura O, Watabe Y, Matsumoto N, Takasugi O, Watanabe A, Tsutsui S (2014) Localization and possible function of nrF-AGP, an alpha-1-acid glycoprotein-like protein in viviparous fish Neoditrema ransonnetii (Perciformes, Embiotocidae). Fish Physiol Biochem 40:1907–1915

    CAS  PubMed  Google Scholar 

  • Patel J, Landers K, Li H, Mortimer RH, Richard K (2011) Delivery of maternal thyroid hormones to the fetus. Trends Endocrinol Metab 22:164–170

    CAS  PubMed  Google Scholar 

  • Patel J, Landers KA, Mortimer RH, Richard K (2012) Expression and uptake of the thyroxine-binding protein transthyretin is regulated by oxygen in primary trophoblast placental cells. J Endocrinol 212:159–167

    CAS  PubMed  Google Scholar 

  • Power DM, Elias NP, Richardson SJ, Mendes J, Soares CM, Santos CR (2000) Evolution of the thyroid hormone-binding protein, transthyretin. Gen Comp Endocrinol 119:241–255

    CAS  PubMed  Google Scholar 

  • Power DM, Llewellyn L, Faustino M, Nowell MA, Björnsson BT, Einarsdottir IE, Canario AV, Sweeney GE (2001) Thyroid hormones in growth and development of fish. Comp Biochem Physiol C 130:447–459

    CAS  Google Scholar 

  • Raine JC, Leatherland JF (2003) Trafficking of l-triiodothyronine between ovarian fluid and oocytes of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B 136:267–274

    PubMed  Google Scholar 

  • Santos CRA, Power DM (1999) Identification of transthyretin in fish (Sparus aurata): cDNA cloning and characterization. Endocrinol 140:2430–2433

    CAS  Google Scholar 

  • Santos CRA, Anjos L, Power DM (2002) Transthyretin in fish: state of the art. Clin Cehm Lab Med 40:1244–1249

    CAS  Google Scholar 

  • Schreiber G (2002) The evolutionary and integrative roles of transthyretin in thyroid hormone homeostasis. J Endocrinol 175:61–73

    CAS  PubMed  Google Scholar 

  • Suzuki S, Kasai K, Nishiyama N, Ishihara A, Yamauchi K (2017) Characteristics of the brown hagfish Paramyxine atami transthyretin: metal ion-dependent thyroid hormone binding. Gen Comp Endocrinol 249:1–14

    CAS  PubMed  Google Scholar 

  • Tagawa M, Tanaka M, Matsumoto S, Hirano T (1990) Thyroid hormones in eggs of various freshwater, marine and diadromous teleosts and their changes during egg development. Fish Physiol Biochem 8:515–520

    CAS  PubMed  Google Scholar 

  • Tanaka M, Tanangonan JB, Tagawa M, de Jesus EG, Nishida H, Isaka M, Kimura R, Hirano T (1995) Development of the pituitary, thyroid and interrenal glands and applications of endocrinology to the improved rearing of marine fish larvae. Aquaculture 125:111–126

    Google Scholar 

  • Tsutsui S, Komatsu Y, Sugiura T, Araki K, Nakamura O (2011) A unique epidermal mucus lectin identified from catfish (Silurus asotus): first evidence of intelectin in fish skin slime. J Biochem 150:501–514

    CAS  PubMed  Google Scholar 

  • Ueda K, Saito E, Iwasaki K, Tsutsui S, Nozawa A, Kikuchi K, Nakamura O (2016) Accumulation of cells expressing macrophage colony-stimulating factor receptor gene in the ovary of a pregnant viviparous fish, Neoditrema ransonnetii (Perciformes, Embiotocidae). Fish Shellfish Immunol 50:223–230

    CAS  PubMed  Google Scholar 

  • Wourms JP (1981) Viviparity: the maternal-fetal relationship in fishes. Am Zool 21:473–515

    Google Scholar 

  • Yamano K (2005) The role of thyroid hormone in fish development with reference to aquaculture. JARQ 39:161–168

    CAS  Google Scholar 

  • Yamauchi K, Nakajima J, Hayashi H, Hara A (1999) Purification and characterization of thyroid-hormone-binding protein from masu salmon serum. A homolog of higher-vertebrate transthyretin. Eur J Biochem 265:944–949

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by RS, KA, HK, TK, YT, and AT. The first draft of the manuscript was written by ON and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Osamu Nakamura.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by B. Pelster.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1. Fig. A1. cDNA sequences of NrTTR and its predicted amino acid sequence (DOCX 26 kb)

360_2020_1261_MOESM2_ESM.tif

Supplementary file2. Fig. A2. Preparation of rTTR. Insoluble fraction of the transformed bacteria was solubilized with urea-containing buffer and subjected to affinity chromatography with Ni-Sepharose column. SDS-PAGE gel stained with CBB. Lane M: marker; Lane 1: insoluble fraction; Lane 2–9: eluted fractions (TIF 2209 kb)

360_2020_1261_MOESM3_ESM.tif

Supplementary file3. Fig. A3. Western blotting with anti-rNrTTR. Pregnant fetal plasma (diluted 1:100) was electrophoresed. M marker (TIF 411 kb)

Supplementary file4 (DOCX 12 kb)

Supplementary file5 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, O., Suzuki, R., Asai, K. et al. Transport of maternal transthyretin to the fetus in the viviparous teleost Neoditrema ransonnetii (Perciformes, Embiotocidae). J Comp Physiol B 190, 231–241 (2020). https://doi.org/10.1007/s00360-020-01261-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-020-01261-w

Keywords

Navigation