Skip to main content

Advertisement

Log in

Persistence of Lymphocystis Disease Virus (LCDV) in Seawater

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Lymphocystis disease virus (LCDV), the causative agent of lymphocystis disease (LCD), is a waterborne pathogen that uses the external surfaces, including the gills, as portals to gain access to fish host. However, there are no data on LCDV persistence in the aquatic environment. In this study, the persistence of LCDV in natural (raw), treated (autoclaved and filtered) and synthetic seawater held at 22 and 18 °C has been evaluated. The estimated T99 values for LCDV in seawater ranged from 2.7 to 242 days depending on seawater type and temperature, with the highest value recorded at 22 °C in autoclaved seawater. Microbiota and temperature seem to be the main factors affecting the persistence of LCDV in seawater. The results indicated that LCDV is more stable in treated seawater than most of the fish pathogenic viruses studied so far, supporting the relevance of this medium for the prevalence of LCD in fish farms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Afonso, L. O. B., Richmond, Z., Eaves, A. A., Richard, J., Hawley, L. M., & Garver, K. A. (2012). Use of ultraviolet C (UVC) radiation to inactivate infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) in fish processing plant effluent. Journal of Aquaculture Research and Development,3, 1–5.

    Google Scholar 

  • Anders, K. (1989). Lymphocystis disease of fishes. In W. Ahne & D. Kurstak (Eds.), Viruses of lower vertebrates (pp. 141–160). Berlin: Springer.

    Google Scholar 

  • Barja, J., Toranzo, A., Lemos, M., & Hetrick, F. (1983). Influence of water temperature and salinity on the survival of IPN and IHN viruses. Bulletin of the European Association of Fish Pathologists,3, 47–50.

    Google Scholar 

  • Berthiaume, L., Heppel, J., Desy, M., Leblanc, L., Lallier, R., Bailey, R., et al. (1993). Manifestation of lymphocystis disease in American plaice (Hippoglossoides platessoides) exposed to low salinities. Canadian Journal of Fisheries and Aquatic Sciences,50, 430–434.

    Google Scholar 

  • Borrego, J. J., Valverde, E. J., Labella, A. M., & Castro, D. (2017). Lymphocystis disease virus: Its importance in aquaculture. Reviews in Aquaculture,9, 179–193.

    Google Scholar 

  • Bowser, P. R., Wooster, G. A., & Getchell, R. G. (1999). Transmission of walleye dermal sarcoma and lymphocystis via waterborne exposure. Journal of Aquatic Animal Health,11, 158–161.

    Google Scholar 

  • Cano, I., Lopez-Jimena, B., Garcia-Rosado, E., Ortiz-Delgado, J. B., Alonso, M. C., Borrego, J. J., et al. (2009). Detection and persistence of Lymphocystis disease virus (LCDV) in Artemia sp. Aquaculture,291, 230–236.

    CAS  Google Scholar 

  • Cano, I., Valverde, E. J., Garcia-Rosado, E., Alonso, M. C., Lopez-Jimena, B., Ortiz-Delgado, J. B., et al. (2013). Transmission of lymphocystis disease virus to cultured gilthead seabream, Sparus aurata L., larvae. Journal of Fish Diseases,36, 569–576.

    CAS  PubMed  Google Scholar 

  • Carballo, C., Ortiz-Delgado, J. B., Berbel, C., Castro, D., Borrego, J. J., Sarasquete, C., et al. (2019). Feed and immersion challenges with lymphocystis disease virus (LCDV) reveals specific mechanisms for horizontal transmission and immune response in Senegalese sole post-larvae. Fish and Shellfish Immunology,89, 710–718.

    CAS  PubMed  Google Scholar 

  • Colorni, A., & Padrós, F. (2011). Diseases and health management. In M. A. Pavlidis & C. C. Mylonas (Eds.), Sparidae: Biology and aquaculture of gilthead sea bream and other species (pp. 321–357). Oxford: Wiley-Blackwell.

    Google Scholar 

  • Foreman, M. G. G., Guo, M., Garver, K. A., Stucchi, D., Chandler, P., Wan, D., et al. (2015). Modelling infectious hematopoietic necrosis virus dispersion from marine salmon farms in the Discovery Islands, British Columbia, Canada. PLoS ONE,10, e0130951.

    PubMed  PubMed Central  Google Scholar 

  • Garver, K. A., Mahony, A. A. M., Stucchi, D., Richard, J., Van Woensel, C., & Foreman, M. (2013). Estimation of parameters influencing waterborne transmission of infectious hematopoietic necrosis virus (IHNV) in Atlantic Salmon (Salmo salar). PLoS ONE,8, e82296.

    PubMed  PubMed Central  Google Scholar 

  • Gerba, C. P., & Schaiberger, G. E. (1975). Effect of particulates on virus survival in seawater. Journal Water Pollution Control Federation,47, 93–103.

    CAS  PubMed  Google Scholar 

  • Hawley, L. M., & Garver, K. A. (2008). Stability of viral haemorrhagic septicemia virus (VHSV) in freshwater and seawater at various temperatures. Diseases of Aquatic Organisms,82, 171–178.

    PubMed  Google Scholar 

  • Hick, P., Becker, J., & Whittington, R. (2016). Iridoviruses of fish. In F. S. B. Kibenge & M. Godoy (Eds.), Aquaculture virology (1st ed., pp. 127–152). Cambridge, MA: Academic Press.

    Google Scholar 

  • Hossain, M., Kim, S. R., Kitamura, S. I., Kim, D. W., Jung, S. J., Nishizawa, T., et al. (2009). Lymphocystis disease virus persists in the epidermal tissues of olive flounder, Paralichthys olivaceus (Temminch & Schlegel), at low temperatures. Journal of Fish Diseases,32, 699–703.

    CAS  PubMed  Google Scholar 

  • Iwamoto, R., Hasegawa, O., LaPatra, S., & Yoshimizu, M. (2002). Isolation and characterization of the Japanese flounder (Paralichthys olivaceus) lymphocystis disease virus. Journal of Aquatic Animal Health,14, 114–123.

    Google Scholar 

  • Kamei, Y., Yoshimizu, M., Ezura, Y., & Kimura, T. (1988a). Effects of environmental water on the infectivities of infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV). Journal of Applied Ichthyology,4, 37–47.

    Google Scholar 

  • Kamei, Y., Yoshimizu, M., Ezura, Y., & Kimura, T. (1988b). Screening of bacteria with antiviral activity from fresh water salmonid hatcheries. Microbiology and Immunology,32, 67–73.

    CAS  PubMed  Google Scholar 

  • Kapuscinski, R. B., & Mitchell, R. (1980). Process controlling virus inactivation in coastal waters. Water Research,14, 363–371.

    CAS  Google Scholar 

  • Kell, A. M., Wargo, A. R., & Kurath, G. (2014). Viral fitness does not correlate with three genotype displacement events involving infectious hematopoietic necrosis virus. Virology,464, 146–155.

    PubMed  Google Scholar 

  • Kim, S. J., Si, J., Lee, J. E., & Ko, G. (2012). Temperature and humidity influences on inactivation kinetics of enteric viruses on surfaces. Environmental Science and Technology,46, 13303–13310.

    CAS  PubMed  Google Scholar 

  • Kimura, T., Yoshimizu, Y., Ezura, Y., & Kamei, Y. (1990). An antiviral agent (46NW-04A) produced by Pseudomonas sp. and its activity against fish viruses. Journal of Aquatic Animal Health,2, 12–20.

    Google Scholar 

  • Kitamura, S. I., Ko, J. Y., Lee, W. L., Kim, S. R., Song, J. Y., Kim, D. K., et al. (2007). Seasonal prevalence of lymphocystis disease virus and aquabirnavirus in Japanese flounder, Paralichthys olivaceus and blue mussel, Mytilus galloprovincialis. Aquaculture,266, 26–31.

    Google Scholar 

  • Kvitt, H., Heinisch, G., & Diamant, A. (2008). Detection and phylogeny of Lymphocystivirus in sea bream Sparus aurata based on the DNA polymerase gene and major capsid protein sequences. Aquaculture,275, 58–63.

    CAS  Google Scholar 

  • Moser, J. R., Galván Álvarez, D. A., Mendoza Cano, F., Encinas Garcia, T., Coronado Molina, D. E., Portillo Clark, G., et al. (2012). Water temperature influences viral load and detection of White Spot Syndrome Virus (WSSV) in Litopenaeus vannamei and wild crustaceans. Aquaculture,326–329, 9–14.

    Google Scholar 

  • Munro, J., Bayley, A. E., McPherson, N. J., & Feist, S. W. (2016). Survival of frog virus 3 in freshwater and sediment from an English lake. Journal of Wildlife Diseases,52, 138–142.

    PubMed  Google Scholar 

  • Nazir, J., Spengler, M., & Marschang, R. E. (2012). Environmental persistence of amphibian and reptilian ranaviruses. Diseases of Aquatic Organisms,98, 177–184.

    CAS  PubMed  Google Scholar 

  • Oidtmann, B., Dixon, P., Way, K., Joiner, C., & Bayley, A. E. (2017). Risk of waterborne virus spread: Review of survival of relevant fish and crustacean viruses in the aquatic environment and implications for control measures. Reviews in Aquaculture. https://doi.org/10.1111/raq.12192.

    Article  Google Scholar 

  • Oidtmann, B. C., Peeler, E. J., Thrush, M. A., Cameron, A. R., Rees, R. A., Pearce, F. M., et al. (2014). Expert consultation on risk factors for introduction of infectious pathogens into fish farms. Preventive Veterinary Medicine,115, 238–254.

    PubMed  Google Scholar 

  • Paperna, I., Sabnai, I., & Colorni, A. (1982). An outbreak of lymphocystis in Sparus aurata L. in the Gulf of Aqaba, Red Sea. Journal of Fish Diseases,5, 433–437.

    Google Scholar 

  • Plumb, J. A. (1993). Viral diseases of marine fish. In J. A. Couch & J. W. Fournie (Eds.), Pathobiology of marine and estuarine organisms (pp. 25–52). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Reed, L. J., & Muench, H. (1938). A simple method of estimating fifty per cent endpoints. American Journal of Hygiene,27, 493–497.

    Google Scholar 

  • Shimizu, T., Yoshida, N., Kasai, H., & Yoshimizu, M. (2006). Survival of koi herpesvirus (KHV) in environmental water. Fish Pathology,41, 153–157.

    Google Scholar 

  • Sindermann, C. J. (1996). Pollution and infectious diseases. In C. J. Sindermann (Ed.), Ocean pollution: Effects on living resource and humans (pp. 37–40). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Smail, D. A., & Munro, A. L. S. (2001). The virology of teleosts. In R. J. Roberts (Ed.), Fish pathology (3rd ed., pp. 169–253). Orlando, FL: W.B. Saunders.

    Google Scholar 

  • Sun, X. Q., Huang, J., Liu, Y. K., Qu, L. Y., Hong, X. G., & Zhang, J. X. (2003). The studies on diagnostic method of dot blot and in situ hybridization for lymphocystis disease of cultured Paralichthys olivaceus. High Technology Letters,1, 89–94.

    Google Scholar 

  • Tapia, E., Monti, G., Rozas, M., Sadoval, A., Gaete, A., Bohle, H., et al. (2013). Assessment of the in vitro survival of the infectious salmon anaemia virus (ISAV) under different water types and temperatures. Bulletin of the European Association of Fish Pathologists,33, 3–12.

    Google Scholar 

  • Toffan, A., Panzarin, V., Toson, M., Cecchettin, K., & Pascoli, F. (2016). Water temperature affects pathogenicity of different betanodavirus genotypes in experimentally challenged Dicentrarchus labrax. Diseases of Aquatic Organisms,119, 231–238.

    CAS  PubMed  Google Scholar 

  • Toranzo, A. E., & Hetrick, F. M. (1982). Comparative stability of two salmonid viruses and poliovirus in fresh, estuarine and marine waters. Journal of Fish Diseases,5, 223–231.

    Google Scholar 

  • Vo, N. T. K., Bender, A. W., Lee, L. E. J., Lumsden, J. S., Lorenzen, N., Dixon, B., et al. (2015). Development of a walleye cell line and use to study the effects of temperature on infection by viral haemorrhagic septicaemia virus group IVb. Journal of Fish Diseases,38, 121–136.

    CAS  PubMed  Google Scholar 

  • Wang, M., Lin, X., Ma, G., & Bai, X. (2007). Emerging viral diseases of fish and shrimp. In S. K. Lal (Ed.), Emerging viral diseases of Southeast Asia Issues in infectious diseases (vol. 4, pp. 35–58). Basel: Karger.

    Google Scholar 

  • Wolf, K. (1988). Fish viruses and fish viral diseases. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Xing, J., Sheng, X., & Zhan, W. (2006). Lymphocystis disease and diagnostic methods in China (pp. 30–33). XI: Aquaculture Asia Magazine.

    Google Scholar 

  • Yoshimizu, M., & Ezura, Y. (1999). Biological control of fish viral diseases ny anti-viral substance producing bacteria. Microbes and Environment,14, 269–275.

    Google Scholar 

  • Yoshimizu, M., Takizawa, H., Kamei, Y., & Kimura, T. (1986). Interaction between fish pathogenic viruses and microorganisms in fish rearing water: Survival and inactivation of infectious hematopoietic necrosis virus, infectious pancreatic necrosis virus and Oncorhynchus masou virus in rearing water. Fish Pathology,21, 223–231.

    Google Scholar 

  • Yoshimizu, M., Yoshinaka, T., Hatori, S., & Kasai, H. (2005). Survivability of fish pathogenic viruses in environmental water, and inactivation of fish viruses. Bulletin of Fisheries Research Agency Supplement,2, 47–54.

    Google Scholar 

  • Yoshinaka, T., Yoshimizu, M., & Ezura, Y. (2000). Adsorption and infectivity of infectious hematopoietic necrosis virus (IHNV) with various solids. Journal of Aquatic Animal Health,12, 64–66.

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a project from Junta de Andalucía (P12-RNM-2261) granted to J.J. Borrego. R. Leiva-Rebollo was supported by a fellowship from Junta de Andalucía. The authors thank Cristina Zaballa for her collaboration in carrying out the evaluation of the antimicrobial treatment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan J. Borrego.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leiva-Rebollo, R., Labella, A.M., Valverde, E.J. et al. Persistence of Lymphocystis Disease Virus (LCDV) in Seawater. Food Environ Virol 12, 174–179 (2020). https://doi.org/10.1007/s12560-020-09420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-020-09420-6

Keywords

Navigation