Skip to main content
Log in

The Effects of Paclitaxel in the Combination of Diamond Nanoparticles on the Structure of Human Serum Albumin (HSA) and Their Antiproliferative Role on MDA-MB-231cells

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Since the interactions of anti-cancer agents with blood constituents, in particular with human serum albumin (HSA) may have a major impact on drug pharmacology, the present study designed to provide a fundamental understanding of the interaction of nanodiamonds (NDs) together with paclitaxel (PTX) with HSA in detail for the first time. The UV–Vis, steady-state fluorescence, far-UV CD and zeta potential results displayed that PTX + NDs could form a complex with HSA. Additionally, the values of binding constants and ΔG° showed that PTX + NDs interact strongly with HSA compared to PTX or NDs alone and the hydrophobic force plays a major role in this interaction. Moreover, the in vitro release behavior of PTX + NDs form HSA can be regulated at dissimilar pH levels. The anticancer property of 0.5 µM PTX + 20 µM NDs by MTT assay demonstrates that this combination can tremendously diminish the proliferation of MDA-MB-231cells compared to PTX or NDs alone. Altogether, the structure of HSA changed moderately in the presence of PTX + NDs and PTX + NDs can promote mortality of MDA-MB-231 cells besides those mortality effects induced via PTX or NDs alone. The results obtained from this study can help in understanding the pharmacokinetic properties of PTX + NDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. El-Fakharany EM, Abu-Serie MM, Litus EA, Permyakov SE, Permyakov EA, Uversky VN, Redwan EM (2018) The use of human, bovine, and camel milk albumins in anticancer complexes with oleic acid. Protein J 37(3):203–215

    Article  PubMed  CAS  Google Scholar 

  2. Prado MA, Casado P, Zuazua-Villar P, del Valle E, Artime N, Cabal-Hierro L, Martínez-Campa CM, Lazo PS, Ramos S (2007) Phosphorylation of human eukaryotic elongation factor 1Bγ is regulated by paclitaxel. Proteomics 7(18):3299–3304

    Article  PubMed  CAS  Google Scholar 

  3. Garro A, Beltramo D, Alasino R, Leonhard V, Heredia V, Bianco I (2011) Reversible exposure of hydrophobic residues on albumin as a novel strategy for formulation of nanodelivery vehicles for taxanes. Int J Nanomed 6:1193–1200

    CAS  Google Scholar 

  4. Lee WL, Guo WM, Ho VH, Saha A, Chong HC, Tan NS, Tan EY, Loo SCJ (2015) Delivery of doxorubicin and paclitaxel from double-layered microparticles: the effects of layer thickness and dual-drug vs. single-drug loading. Acta Biomater 27:53–65

    Article  PubMed  CAS  Google Scholar 

  5. Hekmat A, Saboury AA, Divsalar A, Seyedarabi A (2013) Structural effects of TiO2 nanoparticles and doxorubicin on DNA and their antiproliferative roles in T47D and MCF7 cells. Anticancer Agents Med Chem 13(6):932–951

    Article  PubMed  CAS  Google Scholar 

  6. Vaijayanthimala V, Chang HC (2009) Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine 4(1):47–55

    Article  PubMed  CAS  Google Scholar 

  7. Grall R, Girard H, Saad L, Petit T, Gesset C, Combis-Schlumberger M, Paget V, Delic J, Arnault JC, Chevillard S (2015) Impairing the radioresistance of cancer cells by hydrogenated nanodiamonds. Biomaterials 61:290–298

    Article  PubMed  CAS  Google Scholar 

  8. Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56(11):1649–1659

    Article  PubMed  CAS  Google Scholar 

  9. Keremidarska M, Ganeva A, Mitev D, Hikov T, Presker R, Pramatarova L, Krasteva N (2014) Comparative study of cytotoxicity of detonation nanodiamond particles with an osteosarcoma cell line and primary mesenchymal stem cells. Biotechnol Biotechnol Equip 28(4):733–739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kaur R, Chitanda JM, Michel D, Maley J, Borondics F, Yang P, Verrall RE, Badea I (2012) Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies. Int J Nanomedicine 7:3851–3866

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Moosa B, Fhayli K, Li S, Julfakyan K, Ezzeddine A, Khashab NM (2014) Applications of nanodiamonds in drug delivery and catalysis. J Nanosci Nanotechnol 14(1):332–343

    Article  PubMed  CAS  Google Scholar 

  12. Chao J-I, Perevedentseva E, Chung P-H, Liu K-K, Cheng C-Y, Chang C-C, Cheng C-L (2007) Nanometer-sized diamond particle as a probe for biolabeling. Biophys J 93(6):2199–2208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cheng C-Y, Perevedentseva E, Tu J-S, Chung P-H, Cheng C-L, Liu K-K, Chao J-I, Chen P-H, Chang C-C (2007) Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling. Appl Phys Lett 90(16):163903

    Article  CAS  Google Scholar 

  14. Shimkunas RA, Robinson E, Lam R, Lu S, Xu X, Zhang X-Q, Huang H, Osawa E, Ho D (2009) Nanodiamond–insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30(29):5720–5728

    Article  PubMed  CAS  Google Scholar 

  15. Huang L-CL, Chang H-C (2004) Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 20(14):5879–5884

    Article  PubMed  CAS  Google Scholar 

  16. Vial S, Mansuy C, Sagan S, Irinopoulou T, Burlina F, Boudou JP, Chassaing G, Lavielle S (2008) Peptide-grafted nanodiamonds: preparation, cytotoxicity and uptake in cells. ChemBioChem 9(13):2113–2119

    Article  PubMed  CAS  Google Scholar 

  17. Zhu Y, Zhang Y, Shi G, Yang J, Zhang J, Li W, Li A, Tai R, Fang H, Fan C (2015) Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity. Part Fibre Toxicol 12(1):1–11

    Article  CAS  Google Scholar 

  18. Purcell M, Neault JF, Tajmir-Riahi HA (2000) Interaction of taxol with human serum albumin. Biochim Biophys Acta 1478(1):61–68

    Article  PubMed  CAS  Google Scholar 

  19. Wang Y, Wang X, Wang J, Zhao Y, He W, Guo Z (2011) Noncovalent interactions between a trinuclear monofunctional platinum complex and human serum albumin. Inorg Chem 50(24):12661–12668

    Article  PubMed  CAS  Google Scholar 

  20. Liu K-K, Zheng W-W, Wang C-C, Chiu Y-C, Cheng C-L, Lo Y-S, Chen C, Chao J-I (2010) Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology 21(31):315106

    Article  PubMed  CAS  Google Scholar 

  21. Chow EK, Zhang X-Q, Chen M, Lam R, Robinson E, Huang H, Schaffer D, Osawa E, Goga A, Ho D (2011) Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med 3(73):21

    Article  Google Scholar 

  22. Xiao J, Duan X, Yin Q, Zhang Z, Yu H, Li Y (2013) Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer. Biomaterials 34(37):9648–9656

    Article  PubMed  CAS  Google Scholar 

  23. Pashah Z, Hekmat A, Hesami Tackallou S (2019) Structural effects of diamond nanoparticles and paclitaxel combination on calf thymus DNA. Nucleosides Nucleotides Nucleic Acids 38(4):249–278

    Article  PubMed  CAS  Google Scholar 

  24. Maity S, Mukherjee K, Banerjee A, Mukherjee S, Dasgupta D, Gupta S (2016) Inhibition of porcine pancreatic amylase activity by sulfamethoxazole: structural and functional aspect. Protein J 35(3):237–246

    Article  PubMed  CAS  Google Scholar 

  25. Yuqin L, Guirong Y, Zhen Y, Caihong L, Baoxiu J, Jiao C, Yurong G (2014) Investigation of the interaction between patulin and human serum albumin by a spectroscopic method, atomic force microscopy, and molecular modeling. BioMed Res Int 2014:1–9

    Article  CAS  Google Scholar 

  26. Na N, Zhao D-Q, Li H, Jiang N, Wen J-Y, Liu H-Y (2015) DNA binding, photonuclease activity and human serum albumin interaction of a water-soluble freebase carboxyl corrole. Molecules 21(1):1–14

    Article  CAS  Google Scholar 

  27. He Y, Wang Y, Tang L, Liu H, Chen W, Zheng Z, Zou G (2008) Binding of puerarin to human serum albumin: a spectroscopic analysis and molecular docking. J Fluoresc 18(2):433–442

    Article  PubMed  CAS  Google Scholar 

  28. Li X, Wang G, Chen D, Lu Y (2014) Interaction of procyanidin B3 with bovine serum albumin. RSC Adv 4(14):7301–7312

    Article  CAS  Google Scholar 

  29. Pan X, Qin P, Liu R, Wang J (2011) Characterizing the interaction between tartrazine and two serum albumins by a hybrid spectroscopic approach. J Agric Food Chem 59(12):6650–6656

    Article  PubMed  CAS  Google Scholar 

  30. Kalalbandi VKA, Seetharamappa J, Katrahalli U (2015) Synthesis, crystal studies and in vivo anti-hyperlipidemic activities of indole derivatives containing fluvastatin nucleus. RSC Adv 5(48):38748–38759

    Article  CAS  Google Scholar 

  31. Yang X, Ye Z, Yuan Y, Zheng Z, Shi J, Ying Y, Huang P (2013) Insights into the binding of paclitaxel to human serum albumin: multispectroscopic studies. Luminescence 28(3):427–434

    Article  PubMed  CAS  Google Scholar 

  32. Karthikeyan S, Bharanidharan G, Kesherwani M, Mani KA, Srinivasan N, Velmurugan D, Aruna P, Ganesan S (2016) Insights into the binding of thiosemicarbazone derivatives with human serum albumin: Spectroscopy and molecular modelling studies. J Biomol Struct Dyn 34(6):1264–1281

    Article  PubMed  CAS  Google Scholar 

  33. Sahu SN, Padhan SK, Sahu PK (2016) Coumarin functionalized thiocarbonohydrazones as a new class of chromofluorescent receptors for selective detection of fluoride ion. RSC Adv 6(93):90322–90330

    Article  CAS  Google Scholar 

  34. Veeralakshmi S, Sabapathi G, Nehru S, Venuvanalingam P, Arunachalam S (2017) Surfactant–cobalt (III) complexes: the impact of hydrophobicity on interaction with HSA and DNA–insights from experimental and theoretical approach. Colloids Surf B Biointerfaces 153:85–94

    Article  PubMed  CAS  Google Scholar 

  35. Hajihassan Z, Rabbani-Chadegani A (2011) The effect of mitoxantrone as an anticancer drug on hepatocytes nuclei and chromatin: selective release of histone proteins. Indian J Pharmacol 43(2):187–191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Amani N, Reza Saberi M, Khan Chamani J (2011) Investigation by fluorescence spectroscopy, resonance rayleigh scattering and zeta potential approaches of the separate and simultaneous binding effect of paclitaxel and estradiol with human serum albumin. Protein Pept Lett 18(9):935–951

    Article  PubMed  CAS  Google Scholar 

  37. Varlan A, Hillebrand M (2010) Bovine and human serum albumin interactions with 3-carboxyphenoxathiin studied by fluorescence and circular dichroism spectroscopy. Molecules 15(6):3905–3919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zhou X, Lü W, Su L, Dong Y, Li Q, Chen X (2012) The binding affinity of amino acid–protein: hydroxyproline binding site I on human serum albumin. Org Biomol Chem 10(41):8314–8321

    Article  PubMed  CAS  Google Scholar 

  39. Šprung M, Soldo B, Orhanović S, Bučević-Popović V (2017) Substrate-induced conformational changes of the tyrocidine synthetase 1 adenylation domain probed by intrinsic Trp fluorescence. Protein J 36(3):202–211

    Article  PubMed  CAS  Google Scholar 

  40. Masters BR (2008) Principles of fluorescence spectroscopy. J Biomed Opt 13(2):029901

    Article  Google Scholar 

  41. Moradi SZ, Nowroozi A, Sadrjavadi K, Moradi S, Mansouri K, Hosseinzadeh L, Shahlaei M (2018) Direct evidences for the groove binding of the Clomifene to double stranded DNA. Int J Biol Macromol 114:40–53

    Article  PubMed  CAS  Google Scholar 

  42. Yañez C, Günther G (2014) Is the determination of the association constant of cyclodextrin inclusion complexes dependent on the technique. J Chil Chem Soc 59(2):2523–2525

    Article  Google Scholar 

  43. Shi J-H, Chen J, Wang J, Zhu Y-Y (2015) Binding interaction between sorafenib and calf thymus DNA: spectroscopic methodology, viscosity measurement and molecular docking. Spectrochim Acta A 136:443–450

    Article  CAS  Google Scholar 

  44. Li S, Pan J, Zhang G, Xu J, Gong D (2017) Characterization of the groove binding between di-(2-ethylhexyl) phthalate and calf thymus DNA. Int J Biol Macromol 101:736–746

    Article  PubMed  CAS  Google Scholar 

  45. Hekmat A, Hajebrahimi Z, Motamedzade A (2017) Structural changes of human serum albumin (HSA) in simulated microgravity. Protein Pept Lett 24(11):1030–1039

    Article  PubMed  CAS  Google Scholar 

  46. Corrêa DH, Ramos CH (2009) The use of circular dichroism spectroscopy to study protein folding, form and function. Afr J Biochem Res 3(5):164–173

    Google Scholar 

  47. Wei Y, Thyparambil AA (1844) Latour RA (2014) Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from. Proteomics 12:2331–2337

    Google Scholar 

  48. Fu X-B, Liu D-D, Lin Y, Hu W, Mao Z-W, Le X-Y (2014) Water-soluble DNA minor groove binders as potential chemotherapeutic agents: synthesis, characterization, DNA binding and cleavage, antioxidation, cytotoxicity and HSA interactions. Dalton Trans 43(23):8721–8737

    Article  PubMed  CAS  Google Scholar 

  49. Gull N, Khan JM, Khan RH (2017) Spectroscopic studies on the gemini surfactant mediated refolding of human serum albumin. Int J Biol Macromol 102:331–335

    Article  PubMed  CAS  Google Scholar 

  50. Valstar A, Almgren M, Brown W, Vasilescu M (2000) The interaction of bovine serum albumin with surfactants studied by light scattering. Langmuir 16(3):922–927

    Article  CAS  Google Scholar 

  51. Dasgupta N, Ranjan S, Patra D, Srivastava P, Kumar A, Ramalingam C (2016) Bovine serum albumin interacts with silver nanoparticles with a “side-on” or “end on” conformation. Chem Biol Interact 253:100–111

    Article  PubMed  CAS  Google Scholar 

  52. Li Y, Yang G, Mei Z (2012) Spectroscopic and dynamic light scattering studies of the interaction between pterodontic acid and bovine serum albumin. Acta Pharm Sin B 2(1):53–59

    Article  CAS  Google Scholar 

  53. Ghosh D, Dey SK, Saha C (2014) Mutation induced conformational changes in genomic DNA from cancerous K562 cells influence drug-DNA binding modes. PLoS ONE 9(1):e84880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sekowski S, Kazmierczak A, Mazur J, Przybyszewska M, Zaborski M, Shcharbin D, Gabryelak T (2009) The interaction between PAMAM G3 5 dendrimer, Cd2 +, dendrimer–Cd2 + complexes and human serum albumin. Colloids Surf B 69(1):95–98

    Article  CAS  Google Scholar 

  55. Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:153–203

    Article  PubMed  CAS  Google Scholar 

  56. Hosainzadeh A, Gharanfoli M, Saberi MR, Chamani J (2012) Probing the interaction of human serum albumin with bilirubin in the presence of aspirin by multi-spectroscopic, molecular modeling and zeta potential techniques: insight on binary and ternary systems. J Biomol Struct Dyn 29(5):1013–1050

    Article  PubMed  CAS  Google Scholar 

  57. Omidvar Z, Parivar K, Sanee H, Amiri-Tehranizadeh Z, Baratian A, Saberi MR, Asoodeh A, Chamani J (2011) Investigations with spectroscopy, zeta potential and molecular modeling of the non-cooperative behaviour between cyclophosphamide hydrochloride and aspirin upon interaction with human serum albumin: Binary and ternary systems from the view point of multi-drug therapy. J Biomol Struct Dyn 29(1):181–206

    Article  PubMed  CAS  Google Scholar 

  58. Aramesh M, Shimoni O, Ostrikov K, Prawer S, Cervenka J (2015) Surface charge effects in protein adsorption on nanodiamonds. Nanoscale 7(13):5726–5736

    Article  PubMed  CAS  Google Scholar 

  59. Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7(1):11–23

    Article  CAS  Google Scholar 

  60. Raghunand N, He X, Van Sluis R, Mahoney B, Baggett B, Taylor C, Paine-Murrieta G, Roe D, Bhujwalla ZM, Gillies R (1999) Enhancement of chemotherapy by manipulation of tumour pH. Br J Cancer 80(7):1005–1011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Gou Y, Zhang Z, Li D, Zhao L, Cai M, Sun Z, Li Y, Zhang Y, Khan H, Sun H (2018) HSA-based multi-target combination therapy: regulating drugs’ release from HSA and overcoming single drug resistance in a breast cancer model. Drug Deliv 25(1):321–329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. Evini at the Institute of Biochemistry and Biophysics of Tehran University for technical support. The authors thank Professor Gholamhossein Riazi (Institute of Biochemistry and Biophysics of Tehran University) for assistance with MTT assays.

Funding

This research received no specific funding and grant from any funding agency in the public, commercial, governmental, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Hekmat.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hekmat, A., Salavati, F. & Hesami Tackallou, S. The Effects of Paclitaxel in the Combination of Diamond Nanoparticles on the Structure of Human Serum Albumin (HSA) and Their Antiproliferative Role on MDA-MB-231cells. Protein J 39, 268–283 (2020). https://doi.org/10.1007/s10930-020-09882-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09882-4

Keywords

Navigation